Estimation of unconfined compressive strength of cement-stabilized jabre as material upgrade on highway construction
Granite rock has powerful alterations at several meters of depth. The clayed sand resulting is commonly known as jabre. This “in situ” mixture of cement-stabilized soil requires a laboratory formula. Even when the test section is correctly verified, the mechanical properties of the homogeneous mixtu...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Consejo Superior de Investigaciones Científicas
2020-06-01
|
Series: | Materiales de Construccion |
Subjects: | |
Online Access: | http://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2287 |
id |
doaj-976c9c7a9a994d4d8c3f26a335c8d8ef |
---|---|
record_format |
Article |
spelling |
doaj-976c9c7a9a994d4d8c3f26a335c8d8ef2021-05-05T07:36:25ZengConsejo Superior de Investigaciones CientíficasMateriales de Construccion0465-27461988-32262020-06-0170338e218e21810.3989/mc.2020.090192212Estimation of unconfined compressive strength of cement-stabilized jabre as material upgrade on highway constructionE. Teijón-López-Zuazo0https://orcid.org/0000-0002-9962-4846Á. Vega-Zamanillo1https://orcid.org/0000-0002-7140-6329M. Á. Calzada-Pérez2https://orcid.org/0000-0001-6528-9392L. Juli-Gándara3https://orcid.org/0000-0003-1802-7191Construction and Agronomy Department, Zamora Polytechnical School, University of SalamancaDepartment of Transportation and Projects and Processes Technology. Civil Engineering Technical School of Santander, University of CantabriaDepartment of Transportation and Projects and Processes Technology. Civil Engineering Technical School of Santander, University of CantabriaDepartment of Transportation and Projects and Processes Technology. Civil Engineering Technical School of Santander, University of CantabriaGranite rock has powerful alterations at several meters of depth. The clayed sand resulting is commonly known as jabre. This “in situ” mixture of cement-stabilized soil requires a laboratory formula. Even when the test section is correctly verified, the mechanical properties of the homogeneous mixture of jabre exhibit high degrees of dispersion. The laboratory work undertaken included particle-size analysis and screening, definition of liquid and plastic limits, compressive strength, dry density and moisture content over stabilized samples, modified Proctor, California Bearing Ratio (CBR) and the determination of the workability of the hydraulically bound mixtures. The stress resistance curve was analyzed by means of a multilinear model of unconfined compressive strength (UCS). Since practical engineering only requires UCS for 7 days, in order to gain greater knowledge of the material, other UCS transformations were used at other curing times such as 7, 14 and 28 days.http://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2287graniteblended cementcuringcompressive strengthmodelization |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
E. Teijón-López-Zuazo Á. Vega-Zamanillo M. Á. Calzada-Pérez L. Juli-Gándara |
spellingShingle |
E. Teijón-López-Zuazo Á. Vega-Zamanillo M. Á. Calzada-Pérez L. Juli-Gándara Estimation of unconfined compressive strength of cement-stabilized jabre as material upgrade on highway construction Materiales de Construccion granite blended cement curing compressive strength modelization |
author_facet |
E. Teijón-López-Zuazo Á. Vega-Zamanillo M. Á. Calzada-Pérez L. Juli-Gándara |
author_sort |
E. Teijón-López-Zuazo |
title |
Estimation of unconfined compressive strength of cement-stabilized jabre as material upgrade on highway construction |
title_short |
Estimation of unconfined compressive strength of cement-stabilized jabre as material upgrade on highway construction |
title_full |
Estimation of unconfined compressive strength of cement-stabilized jabre as material upgrade on highway construction |
title_fullStr |
Estimation of unconfined compressive strength of cement-stabilized jabre as material upgrade on highway construction |
title_full_unstemmed |
Estimation of unconfined compressive strength of cement-stabilized jabre as material upgrade on highway construction |
title_sort |
estimation of unconfined compressive strength of cement-stabilized jabre as material upgrade on highway construction |
publisher |
Consejo Superior de Investigaciones Científicas |
series |
Materiales de Construccion |
issn |
0465-2746 1988-3226 |
publishDate |
2020-06-01 |
description |
Granite rock has powerful alterations at several meters of depth. The clayed sand resulting is commonly known as jabre. This “in situ” mixture of cement-stabilized soil requires a laboratory formula. Even when the test section is correctly verified, the mechanical properties of the homogeneous mixture of jabre exhibit high degrees of dispersion. The laboratory work undertaken included particle-size analysis and screening, definition of liquid and plastic limits, compressive strength, dry density and moisture content over stabilized samples, modified Proctor, California Bearing Ratio (CBR) and the determination of the workability of the hydraulically bound mixtures. The stress resistance curve was analyzed by means of a multilinear model of unconfined compressive strength (UCS). Since practical engineering only requires UCS for 7 days, in order to gain greater knowledge of the material, other UCS transformations were used at other curing times such as 7, 14 and 28 days. |
topic |
granite blended cement curing compressive strength modelization |
url |
http://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2287 |
work_keys_str_mv |
AT eteijonlopezzuazo estimationofunconfinedcompressivestrengthofcementstabilizedjabreasmaterialupgradeonhighwayconstruction AT avegazamanillo estimationofunconfinedcompressivestrengthofcementstabilizedjabreasmaterialupgradeonhighwayconstruction AT macalzadaperez estimationofunconfinedcompressivestrengthofcementstabilizedjabreasmaterialupgradeonhighwayconstruction AT ljuligandara estimationofunconfinedcompressivestrengthofcementstabilizedjabreasmaterialupgradeonhighwayconstruction |
_version_ |
1721468641728266240 |