A FerroFET-Based In-Memory Processor for Solving Distributed and Iterative Optimizations via Least-Squares Method

In recent years, several designs that use in-memory processing to accelerate machine-learning inference problems have been proposed. Such designs are also a perfect fit for discrete, dynamic, and distributed systems that can solve large-dimensional optimization problems using iterative algorithms. F...

Full description

Bibliographic Details
Main Authors: Insik Yoon, Muya Chang, Kai Ni, Matthew Jerry, Samantak Gangopadhyay, Gus Henry Smith, Tomer Hamam, Justin Romberg, Vijaykrishnan Narayanan, Asif Khan, Suman Datta, Arijit Raychowdhury
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Journal on Exploratory Solid-State Computational Devices and Circuits
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8767985/
Description
Summary:In recent years, several designs that use in-memory processing to accelerate machine-learning inference problems have been proposed. Such designs are also a perfect fit for discrete, dynamic, and distributed systems that can solve large-dimensional optimization problems using iterative algorithms. For in-memory computations, ferroelectric field-effect transistors (FerroFETs) owing to their compact area and distinguishable multiple states offer promising possibilities. We present a distributed architecture that uses FerroFET memory and implements in-memory processing to solve a template problem of least squares minimization. Through this architecture, we demonstrate an improvement of 21× in energy efficiency and 3× in compute time compared to a static random access memory (SRAM)-based processing-inmemory (PIM) architecture.
ISSN:2329-9231