Iron oxide (Fe3O4) magnetic nanoparticles supported on wrinkled fibrous nanosilica (WFNS) functionalized by biimidazole ionic liquid as an effective and reusable heterogeneous magnetic nanocatalyst for the efficient synthesis of N-sulfonylamidines

Wrinkled fibrous nanosilica (WFNS) which functionalized by ionic liquid modified Fe3O4 NPs and CuI salts has been synthesized and characterized with FE-SEM, TEM, FT-IR, FAAS, EDX, and, XRD, VSM, and BET-BJH analysis. This new and effective magnetic ceramic nanocatalyst has been applied towards rapid...

Full description

Bibliographic Details
Main Authors: Sajjad Azizi, Nasrin Shadjou
Format: Article
Language:English
Published: Elsevier 2021-01-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844021000207
Description
Summary:Wrinkled fibrous nanosilica (WFNS) which functionalized by ionic liquid modified Fe3O4 NPs and CuI salts has been synthesized and characterized with FE-SEM, TEM, FT-IR, FAAS, EDX, and, XRD, VSM, and BET-BJH analysis. This new and effective magnetic ceramic nanocatalyst has been applied towards rapid synthesis of N-sulfonylamidines using reaction of phenyl acetylene, substituted sulfonyl azide and various amines under solvent-free conditions in very short reaction time. Higher catalytic activity CuI/Fe3O4NPs@IL-DFNS in the reaction is because of special structure of DFNS and existence of ionic liquids on its pores which act as a robust anchors to the loaded various nano-particles. So, this lead to no leaching of them from the pore of the composite. Shorter reaction time, higher yield, recovery of the catalyst using an external magnet and its reusability for 8 series without noteworthy reduction in its activity are the advantages of newly synthetic catalyst toward efficient synthesis of N-sulfonylamidines.
ISSN:2405-8440