C<sub>0.3</sub>N<sub>0.7</sub>Ti-SiC Toughed Silicon Nitride Hybrids with Non-Oxide Additives Ti<sub>3</sub>SiC<sub>2</sub>

In situ grown C<sub>0.3</sub>N<sub>0.7</sub>Ti and SiC, which derived from non-oxide additives Ti<sub>3</sub>SiC<sub>2</sub>, are proposed to densify silicon nitride (Si<sub>3</sub>N<sub>4</sub>) ceramics with enhanced mechanica...

Full description

Bibliographic Details
Main Authors: Heng Luo, Chen Li, Lianwen Deng, Yang Li, Peng Xiao, Haibin Zhang
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/6/1428
id doaj-9764043a5f7547d8a61b782382aded5d
record_format Article
spelling doaj-9764043a5f7547d8a61b782382aded5d2020-11-25T02:32:09ZengMDPI AGMaterials1996-19442020-03-01136142810.3390/ma13061428ma13061428C<sub>0.3</sub>N<sub>0.7</sub>Ti-SiC Toughed Silicon Nitride Hybrids with Non-Oxide Additives Ti<sub>3</sub>SiC<sub>2</sub>Heng Luo0Chen Li1Lianwen Deng2Yang Li3Peng Xiao4Haibin Zhang5School of Physics and Electronics, Central South University, Changsha 410083, ChinaSchool of Physics and Electronics, Central South University, Changsha 410083, ChinaSchool of Physics and Electronics, Central South University, Changsha 410083, ChinaState Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, ChinaState Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, ChinaInnovation Research Team for Advanced Ceramics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, ChinaIn situ grown C<sub>0.3</sub>N<sub>0.7</sub>Ti and SiC, which derived from non-oxide additives Ti<sub>3</sub>SiC<sub>2</sub>, are proposed to densify silicon nitride (Si<sub>3</sub>N<sub>4</sub>) ceramics with enhanced mechanical performance via hot-press sintering. Remarkable increase of density from 79.20% to 95.48% could be achieved for Si<sub>3</sub>N<sub>4</sub> ceramics with 5 vol.% Ti<sub>3</sub>SiC<sub>2</sub> when sintered at 1600 &#176;C. As expected, higher sintering temperature 1700 &#176;C could further promote densification of Si<sub>3</sub>N<sub>4</sub> ceramics filled with Ti<sub>3</sub>SiC<sub>2</sub>. The capillarity of decomposed Si from Ti<sub>3</sub>SiC<sub>2</sub>, and in situ reaction between nonstoichiometric TiC<i><sub>x</sub></i> and Si<sub>3</sub>N<sub>4</sub> were believed to be responsible for densification of Si<sub>3</sub>N<sub>4</sub> ceramics. An obvious enhancement of flexural strength and fracture toughness for Si<sub>3</sub>N<sub>4</sub> with <i>x</i> vol.% Ti<sub>3</sub>SiC<sub>2</sub> (<i>x</i> = 1~20) ceramics was observed. The maximum flexural strength of 795 MPa for Si<sub>3</sub>N<sub>4</sub> composites with 5 vol.% Ti<sub>3</sub>SiC<sub>2</sub> and maximum fracture toughness of 6.97 MPa&#183;m<sup>1/2</sup> for Si<sub>3</sub>N<sub>4</sub> composites with 20 vol.% Ti<sub>3</sub>SiC<sub>2</sub> are achieved via hot-press sintering at 1700 &#176;C. Pull out of elongated Si<sub>3</sub>N<sub>4</sub> grains, crack bridging, crack branching and crack deflection were demonstrated to dominate enhance fracture toughness of Si<sub>3</sub>N<sub>4</sub> composites.https://www.mdpi.com/1996-1944/13/6/1428ti<sub>3</sub>sic<sub>2</sub>si<sub>3</sub>n<sub>4</sub>mechanical propertiesfracture toughness
collection DOAJ
language English
format Article
sources DOAJ
author Heng Luo
Chen Li
Lianwen Deng
Yang Li
Peng Xiao
Haibin Zhang
spellingShingle Heng Luo
Chen Li
Lianwen Deng
Yang Li
Peng Xiao
Haibin Zhang
C<sub>0.3</sub>N<sub>0.7</sub>Ti-SiC Toughed Silicon Nitride Hybrids with Non-Oxide Additives Ti<sub>3</sub>SiC<sub>2</sub>
Materials
ti<sub>3</sub>sic<sub>2</sub>
si<sub>3</sub>n<sub>4</sub>
mechanical properties
fracture toughness
author_facet Heng Luo
Chen Li
Lianwen Deng
Yang Li
Peng Xiao
Haibin Zhang
author_sort Heng Luo
title C<sub>0.3</sub>N<sub>0.7</sub>Ti-SiC Toughed Silicon Nitride Hybrids with Non-Oxide Additives Ti<sub>3</sub>SiC<sub>2</sub>
title_short C<sub>0.3</sub>N<sub>0.7</sub>Ti-SiC Toughed Silicon Nitride Hybrids with Non-Oxide Additives Ti<sub>3</sub>SiC<sub>2</sub>
title_full C<sub>0.3</sub>N<sub>0.7</sub>Ti-SiC Toughed Silicon Nitride Hybrids with Non-Oxide Additives Ti<sub>3</sub>SiC<sub>2</sub>
title_fullStr C<sub>0.3</sub>N<sub>0.7</sub>Ti-SiC Toughed Silicon Nitride Hybrids with Non-Oxide Additives Ti<sub>3</sub>SiC<sub>2</sub>
title_full_unstemmed C<sub>0.3</sub>N<sub>0.7</sub>Ti-SiC Toughed Silicon Nitride Hybrids with Non-Oxide Additives Ti<sub>3</sub>SiC<sub>2</sub>
title_sort c<sub>0.3</sub>n<sub>0.7</sub>ti-sic toughed silicon nitride hybrids with non-oxide additives ti<sub>3</sub>sic<sub>2</sub>
publisher MDPI AG
series Materials
issn 1996-1944
publishDate 2020-03-01
description In situ grown C<sub>0.3</sub>N<sub>0.7</sub>Ti and SiC, which derived from non-oxide additives Ti<sub>3</sub>SiC<sub>2</sub>, are proposed to densify silicon nitride (Si<sub>3</sub>N<sub>4</sub>) ceramics with enhanced mechanical performance via hot-press sintering. Remarkable increase of density from 79.20% to 95.48% could be achieved for Si<sub>3</sub>N<sub>4</sub> ceramics with 5 vol.% Ti<sub>3</sub>SiC<sub>2</sub> when sintered at 1600 &#176;C. As expected, higher sintering temperature 1700 &#176;C could further promote densification of Si<sub>3</sub>N<sub>4</sub> ceramics filled with Ti<sub>3</sub>SiC<sub>2</sub>. The capillarity of decomposed Si from Ti<sub>3</sub>SiC<sub>2</sub>, and in situ reaction between nonstoichiometric TiC<i><sub>x</sub></i> and Si<sub>3</sub>N<sub>4</sub> were believed to be responsible for densification of Si<sub>3</sub>N<sub>4</sub> ceramics. An obvious enhancement of flexural strength and fracture toughness for Si<sub>3</sub>N<sub>4</sub> with <i>x</i> vol.% Ti<sub>3</sub>SiC<sub>2</sub> (<i>x</i> = 1~20) ceramics was observed. The maximum flexural strength of 795 MPa for Si<sub>3</sub>N<sub>4</sub> composites with 5 vol.% Ti<sub>3</sub>SiC<sub>2</sub> and maximum fracture toughness of 6.97 MPa&#183;m<sup>1/2</sup> for Si<sub>3</sub>N<sub>4</sub> composites with 20 vol.% Ti<sub>3</sub>SiC<sub>2</sub> are achieved via hot-press sintering at 1700 &#176;C. Pull out of elongated Si<sub>3</sub>N<sub>4</sub> grains, crack bridging, crack branching and crack deflection were demonstrated to dominate enhance fracture toughness of Si<sub>3</sub>N<sub>4</sub> composites.
topic ti<sub>3</sub>sic<sub>2</sub>
si<sub>3</sub>n<sub>4</sub>
mechanical properties
fracture toughness
url https://www.mdpi.com/1996-1944/13/6/1428
work_keys_str_mv AT hengluo csub03subnsub07subtisictoughedsiliconnitridehybridswithnonoxideadditivestisub3subsicsub2sub
AT chenli csub03subnsub07subtisictoughedsiliconnitridehybridswithnonoxideadditivestisub3subsicsub2sub
AT lianwendeng csub03subnsub07subtisictoughedsiliconnitridehybridswithnonoxideadditivestisub3subsicsub2sub
AT yangli csub03subnsub07subtisictoughedsiliconnitridehybridswithnonoxideadditivestisub3subsicsub2sub
AT pengxiao csub03subnsub07subtisictoughedsiliconnitridehybridswithnonoxideadditivestisub3subsicsub2sub
AT haibinzhang csub03subnsub07subtisictoughedsiliconnitridehybridswithnonoxideadditivestisub3subsicsub2sub
_version_ 1724821078979641344