Spatial Location in Integrated Circuits through Infrared Microscopy

In this paper, we present an infrared microscopy based approach for structures’ location in integrated circuits, to automate their secure characterization. The use of an infrared sensor is the key device for internal integrated circuit inspection. Two main issues are addressed. The first concerns th...

Full description

Bibliographic Details
Main Authors: Raphaël Abelé, Jean-Luc Damoiseaux, Redouane El Moubtahij, Jean-Marc Boi, Daniele Fronte, Pierre-Yvan Liardet, Djamal Merad
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/6/2175
Description
Summary:In this paper, we present an infrared microscopy based approach for structures’ location in integrated circuits, to automate their secure characterization. The use of an infrared sensor is the key device for internal integrated circuit inspection. Two main issues are addressed. The first concerns the scan of integrated circuits using a motorized optical system composed of an infrared uncooled camera combined with an optical microscope. An automated system is required to focus the conductive tracks under the silicon layer. It is solved by an autofocus system analyzing the infrared images through a discrete polynomial image transform which allows an accurate features detection to build a focus metric robust against specific image degradation inherent to the acquisition context. The second issue concerns the location of structures to be characterized on the conductive tracks. Dealing with a large amount of redundancy and noise, a graph-matching method is presented—discriminating graph labels are developed to overcome the redundancy, while a flexible assignment optimizer solves the inexact matching arising from noises on graphs. The resulting automated location system brings reproducibility for secure characterization of integrated systems, besides accuracy and time speed increase.
ISSN:1424-8220