Effect of fertilization level on water use and production of corn (Zea mays L.) in a cereal producing area in Colombia - a modeling exercise using AquaCrop-FAO

The effect of the amount of fertilization applied to the corn variety 'ICA V-156' (white grain) was calibrated and validated with the simulator AquaCrop in Cerete (Cordoba, Colombia) at an altitude of 20 m. The fertilization level determined factors related to biomass production, the harve...

Full description

Bibliographic Details
Main Authors: Javier García A., Gerhard Fischer, Nestor Riaño H.
Format: Article
Language:English
Published: Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia 2017-01-01
Series:Agronomía Colombiana
Subjects:
Online Access:https://revistas.unal.edu.co/index.php/agrocol/article/view/61428
Description
Summary:The effect of the amount of fertilization applied to the corn variety 'ICA V-156' (white grain) was calibrated and validated with the simulator AquaCrop in Cerete (Cordoba, Colombia) at an altitude of 20 m. The fertilization level determined factors related to biomass production, the harvest index, yield and water use, and potential evapotranspiration (Eto). The basic information which calibrated and validated the model came from research conducted in different altitudes in maize growing areas in Colombia. Unexpectedly, the water shortages occurred during the growing season, which the modelling had not considered. Levels of 90 to 60% of fertilization were applied to the crop according to the analysis of the evaluated soil. The information was subjected to an analysis of variance; the results showed that the level of fertilization affected the formation of biomass, harvest index and yield, as well as, the use of water during the growing season. The ETo values were extreme at 0.9 and 7.3 mm day-1. Likewise the total biomass production was 4.64% less at the level of 90 and 25.04% less at 60% fertilization, as compared to the biomass measurements in the field. Similarly, the harvest index was 32.3 and 29.8% for the 90 and 60% levels of fertilization, respectively; on the other hand the grain yield was not affected by the highest level (90%), whereas when the reduction in fertilization was 40%, a decrease of 14.335% in the grain yield was obtained. In addition, per m3 of water 18.87 and 23.02 kg of grain for the fertilization levels of 60 and 90% were formed, respectively.
ISSN:0120-9965
2357-3732