The effect of flooding on the exchange of the volatile C<sub>2</sub>-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid in relation to assimilation and transpiration was investigated with 2–3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emission...

Full description

Bibliographic Details
Main Authors: W. Junk, A. Wolf, M. T. F. Piedade, U. Kuhn, B. Kleiss, S. Rottenberger, J. Kesselmeier
Format: Article
Language:English
Published: Copernicus Publications 2008-08-01
Series:Biogeosciences
Online Access:http://www.biogeosciences.net/5/1085/2008/bg-5-1085-2008.pdf
id doaj-971f1c8e4e004a2d81acde5c3fafa2d7
record_format Article
spelling doaj-971f1c8e4e004a2d81acde5c3fafa2d72020-11-24T23:12:23ZengCopernicus PublicationsBiogeosciences1726-41701726-41892008-08-015410851100The effect of flooding on the exchange of the volatile C<sub>2</sub>-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphereW. JunkA. WolfM. T. F. PiedadeU. KuhnB. KleissS. RottenbergerJ. KesselmeierThe effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid in relation to assimilation and transpiration was investigated with 2–3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited measurable emissions of any of the compounds, but rather low deposition of acetaldehyde and acetic acid was observed instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid were only observed from the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning suggest that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted, though we can not totally exclude other production pathways. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (25–1700 nmol m<sup>&minus;2</sup> min<sup>&minus;1</sup> for ethanol and 5–500 nmol m<sup>&minus;2</sup> min<sup>&minus;1</sup> for acetaldehyde). Acetic acid emissions reached 12 nmol m<sup>&minus;2</sup> min<sup>&minus;1</sup>. The observed differences in emission rates between the tree species are discussed with respect to their root adaptive strategies to tolerate long term flooding, providing an indirect line of evidence that the root ethanol production is a major factor determining the foliar emissions. Species which develop morphological root structures allowing for enhanced root aeration produced less ethanol and showed much lower emissions compared to species which lack gas transporting systems, and respond to flooding with substantially enhanced fermentation rates and a non-trivial loss of carbon to the atmosphere. The pronounced differences in the relative emissions of ethanol to acetaldehyde and acetic acid between the tree species indicate that not only the ethanol production in the roots but also the metabolic conversion in the leaf is an important factor determining the release of these compounds to the atmosphere. http://www.biogeosciences.net/5/1085/2008/bg-5-1085-2008.pdf
collection DOAJ
language English
format Article
sources DOAJ
author W. Junk
A. Wolf
M. T. F. Piedade
U. Kuhn
B. Kleiss
S. Rottenberger
J. Kesselmeier
spellingShingle W. Junk
A. Wolf
M. T. F. Piedade
U. Kuhn
B. Kleiss
S. Rottenberger
J. Kesselmeier
The effect of flooding on the exchange of the volatile C<sub>2</sub>-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere
Biogeosciences
author_facet W. Junk
A. Wolf
M. T. F. Piedade
U. Kuhn
B. Kleiss
S. Rottenberger
J. Kesselmeier
author_sort W. Junk
title The effect of flooding on the exchange of the volatile C<sub>2</sub>-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere
title_short The effect of flooding on the exchange of the volatile C<sub>2</sub>-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere
title_full The effect of flooding on the exchange of the volatile C<sub>2</sub>-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere
title_fullStr The effect of flooding on the exchange of the volatile C<sub>2</sub>-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere
title_full_unstemmed The effect of flooding on the exchange of the volatile C<sub>2</sub>-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere
title_sort effect of flooding on the exchange of the volatile c<sub>2</sub>-compounds ethanol, acetaldehyde and acetic acid between leaves of amazonian floodplain tree species and the atmosphere
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2008-08-01
description The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid in relation to assimilation and transpiration was investigated with 2–3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited measurable emissions of any of the compounds, but rather low deposition of acetaldehyde and acetic acid was observed instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid were only observed from the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning suggest that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted, though we can not totally exclude other production pathways. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (25–1700 nmol m<sup>&minus;2</sup> min<sup>&minus;1</sup> for ethanol and 5–500 nmol m<sup>&minus;2</sup> min<sup>&minus;1</sup> for acetaldehyde). Acetic acid emissions reached 12 nmol m<sup>&minus;2</sup> min<sup>&minus;1</sup>. The observed differences in emission rates between the tree species are discussed with respect to their root adaptive strategies to tolerate long term flooding, providing an indirect line of evidence that the root ethanol production is a major factor determining the foliar emissions. Species which develop morphological root structures allowing for enhanced root aeration produced less ethanol and showed much lower emissions compared to species which lack gas transporting systems, and respond to flooding with substantially enhanced fermentation rates and a non-trivial loss of carbon to the atmosphere. The pronounced differences in the relative emissions of ethanol to acetaldehyde and acetic acid between the tree species indicate that not only the ethanol production in the roots but also the metabolic conversion in the leaf is an important factor determining the release of these compounds to the atmosphere.
url http://www.biogeosciences.net/5/1085/2008/bg-5-1085-2008.pdf
work_keys_str_mv AT wjunk theeffectoffloodingontheexchangeofthevolatilecsub2subcompoundsethanolacetaldehydeandaceticacidbetweenleavesofamazonianfloodplaintreespeciesandtheatmosphere
AT awolf theeffectoffloodingontheexchangeofthevolatilecsub2subcompoundsethanolacetaldehydeandaceticacidbetweenleavesofamazonianfloodplaintreespeciesandtheatmosphere
AT mtfpiedade theeffectoffloodingontheexchangeofthevolatilecsub2subcompoundsethanolacetaldehydeandaceticacidbetweenleavesofamazonianfloodplaintreespeciesandtheatmosphere
AT ukuhn theeffectoffloodingontheexchangeofthevolatilecsub2subcompoundsethanolacetaldehydeandaceticacidbetweenleavesofamazonianfloodplaintreespeciesandtheatmosphere
AT bkleiss theeffectoffloodingontheexchangeofthevolatilecsub2subcompoundsethanolacetaldehydeandaceticacidbetweenleavesofamazonianfloodplaintreespeciesandtheatmosphere
AT srottenberger theeffectoffloodingontheexchangeofthevolatilecsub2subcompoundsethanolacetaldehydeandaceticacidbetweenleavesofamazonianfloodplaintreespeciesandtheatmosphere
AT jkesselmeier theeffectoffloodingontheexchangeofthevolatilecsub2subcompoundsethanolacetaldehydeandaceticacidbetweenleavesofamazonianfloodplaintreespeciesandtheatmosphere
AT wjunk effectoffloodingontheexchangeofthevolatilecsub2subcompoundsethanolacetaldehydeandaceticacidbetweenleavesofamazonianfloodplaintreespeciesandtheatmosphere
AT awolf effectoffloodingontheexchangeofthevolatilecsub2subcompoundsethanolacetaldehydeandaceticacidbetweenleavesofamazonianfloodplaintreespeciesandtheatmosphere
AT mtfpiedade effectoffloodingontheexchangeofthevolatilecsub2subcompoundsethanolacetaldehydeandaceticacidbetweenleavesofamazonianfloodplaintreespeciesandtheatmosphere
AT ukuhn effectoffloodingontheexchangeofthevolatilecsub2subcompoundsethanolacetaldehydeandaceticacidbetweenleavesofamazonianfloodplaintreespeciesandtheatmosphere
AT bkleiss effectoffloodingontheexchangeofthevolatilecsub2subcompoundsethanolacetaldehydeandaceticacidbetweenleavesofamazonianfloodplaintreespeciesandtheatmosphere
AT srottenberger effectoffloodingontheexchangeofthevolatilecsub2subcompoundsethanolacetaldehydeandaceticacidbetweenleavesofamazonianfloodplaintreespeciesandtheatmosphere
AT jkesselmeier effectoffloodingontheexchangeofthevolatilecsub2subcompoundsethanolacetaldehydeandaceticacidbetweenleavesofamazonianfloodplaintreespeciesandtheatmosphere
_version_ 1725601041454465024