Passive gripper inspired by and the Fin Ray® Effect

Soft robotic grippers are advantageous for tasks in which a robot comes into close contact with a human, must handle a delicate object, or needs to conform to an object. Most soft robotic grippers, like their hard counterparts, require actuation to maintain a grip on an object. Here, we present a pa...

Full description

Bibliographic Details
Main Authors: Whitney Crooks, Shane Rozen-Levy, Barry Trimmer, Chris Rogers, William Messner
Format: Article
Language:English
Published: SAGE Publishing 2017-07-01
Series:International Journal of Advanced Robotic Systems
Online Access:https://doi.org/10.1177/1729881417721155
Description
Summary:Soft robotic grippers are advantageous for tasks in which a robot comes into close contact with a human, must handle a delicate object, or needs to conform to an object. Most soft robotic grippers, like their hard counterparts, require actuation to maintain a grip on an object. Here, we present a passive, soft robotic gripper that requires power to open and close but not to maintain a grip, which can be problematic in environments with limited energy availability (e.g. solar or battery power). Passive grip, by not requiring power to maintain grip on an object, provides a unique and safe alternative to energy-limited or energy-scarce environments. The Tufts Passive Gripper was inspired by the passive grip of the Manduca sexta and the simplicity of the Fin Ray® Effect. The gripper can be three-dimensional printed as one part on a multimaterial three-dimensional printer and only requires four additional steps to install the motor/tendon actuation mechanism. The gripper was capable of picking up over 40 common household objects, including a tissue, a pen, silverware, a needle, a stapler, a cup, and so on. The maximum load a gripper could hold when oriented perpendicular and parallel to the ground was 530 g (1 lb) and 240 g (0.5 lb), respectively.
ISSN:1729-8814