Chemical shifts in molecular solids by machine learning
Solid-state nuclear magnetic resonance combined with quantum chemical shift predictions is limited by high computational cost. Here, the authors use machine learning based on local atomic environments to predict experimental chemical shifts in molecular solids with accuracy similar to density functi...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2018-10-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-018-06972-x |
id |
doaj-970a2addd1a345bea23283a88747dfe7 |
---|---|
record_format |
Article |
spelling |
doaj-970a2addd1a345bea23283a88747dfe72021-05-11T09:33:27ZengNature Publishing GroupNature Communications2041-17232018-10-019111010.1038/s41467-018-06972-xChemical shifts in molecular solids by machine learningFederico M. Paruzzo0Albert Hofstetter1Félix Musil2Sandip De3Michele Ceriotti4Lyndon Emsley5Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL)Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL)Institut des Sciences et Génie Matériaux, Ecole Polytechnique Fédérale de Lausanne (EPFL)Institut des Sciences et Génie Matériaux, Ecole Polytechnique Fédérale de Lausanne (EPFL)Institut des Sciences et Génie Matériaux, Ecole Polytechnique Fédérale de Lausanne (EPFL)Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL)Solid-state nuclear magnetic resonance combined with quantum chemical shift predictions is limited by high computational cost. Here, the authors use machine learning based on local atomic environments to predict experimental chemical shifts in molecular solids with accuracy similar to density functional theory.https://doi.org/10.1038/s41467-018-06972-x |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Federico M. Paruzzo Albert Hofstetter Félix Musil Sandip De Michele Ceriotti Lyndon Emsley |
spellingShingle |
Federico M. Paruzzo Albert Hofstetter Félix Musil Sandip De Michele Ceriotti Lyndon Emsley Chemical shifts in molecular solids by machine learning Nature Communications |
author_facet |
Federico M. Paruzzo Albert Hofstetter Félix Musil Sandip De Michele Ceriotti Lyndon Emsley |
author_sort |
Federico M. Paruzzo |
title |
Chemical shifts in molecular solids by machine learning |
title_short |
Chemical shifts in molecular solids by machine learning |
title_full |
Chemical shifts in molecular solids by machine learning |
title_fullStr |
Chemical shifts in molecular solids by machine learning |
title_full_unstemmed |
Chemical shifts in molecular solids by machine learning |
title_sort |
chemical shifts in molecular solids by machine learning |
publisher |
Nature Publishing Group |
series |
Nature Communications |
issn |
2041-1723 |
publishDate |
2018-10-01 |
description |
Solid-state nuclear magnetic resonance combined with quantum chemical shift predictions is limited by high computational cost. Here, the authors use machine learning based on local atomic environments to predict experimental chemical shifts in molecular solids with accuracy similar to density functional theory. |
url |
https://doi.org/10.1038/s41467-018-06972-x |
work_keys_str_mv |
AT federicomparuzzo chemicalshiftsinmolecularsolidsbymachinelearning AT alberthofstetter chemicalshiftsinmolecularsolidsbymachinelearning AT felixmusil chemicalshiftsinmolecularsolidsbymachinelearning AT sandipde chemicalshiftsinmolecularsolidsbymachinelearning AT micheleceriotti chemicalshiftsinmolecularsolidsbymachinelearning AT lyndonemsley chemicalshiftsinmolecularsolidsbymachinelearning |
_version_ |
1721449674117742592 |