Summary: | Cox's regression model for the analysis of survival data relies on the proportional hazards assumption. However, this assumption is often violated in practice and as a consequence the average relative risk may be under- or overestimated. Weighted estimation of Cox regression is a parsimonious alternative which supplies well interpretable average effects also in case of non-proportional hazards. We provide the R package coxphw implementing weighted Cox regression. By means of two biomedical examples appropriate analyses in the presence of non-proportional hazards are exemplified and advantages of weighted Cox regression are discussed. Moreover, using package coxphw, time-dependent effects can be conveniently estimated by including interactions of covariates with arbitrary functions of time.
|