Fixed Points and Stability of a Generalized Quadratic Functional Equation
<p/> <p>Using the fixed point method, we prove the generalized Hyers-Ulam stability of the generalized quadratic functional equation <inline-formula> <graphic file="1029-242X-2009-193035-i1.gif"/></inline-formula> in Banach modules, where <inline-formula>...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2009/193035 |
Summary: | <p/> <p>Using the fixed point method, we prove the generalized Hyers-Ulam stability of the generalized quadratic functional equation <inline-formula> <graphic file="1029-242X-2009-193035-i1.gif"/></inline-formula> in Banach modules, where <inline-formula> <graphic file="1029-242X-2009-193035-i2.gif"/></inline-formula> are nonzero rational numbers with <inline-formula> <graphic file="1029-242X-2009-193035-i3.gif"/></inline-formula>.</p> |
---|---|
ISSN: | 1025-5834 1029-242X |