Long-Term Hydraulic Adjustment of Three Tropical Moist Forest Tree Species to Changing Climate
Xylem hydraulic adjustment to global climatic changes was reported from temperate, boreal, and Mediterranean tree species. Yet, the long-term hydraulic adjustment in tropical tree species has not been studied so far. Here we developed the first standard chronologies of three hydraulic trait variable...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2018-12-01
|
Series: | Frontiers in Plant Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fpls.2018.01761/full |
id |
doaj-96b818447d3d416bbc45e1af9877f6f8 |
---|---|
record_format |
Article |
spelling |
doaj-96b818447d3d416bbc45e1af9877f6f82020-11-25T02:34:41ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2018-12-01910.3389/fpls.2018.01761409229Long-Term Hydraulic Adjustment of Three Tropical Moist Forest Tree Species to Changing ClimateMahmuda Islam0Mahmuda Islam1Mizanur Rahman2Mizanur Rahman3Achim Bräuning4Department of Geography and Geosciences, Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, GermanyDepartment of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, BangladeshDepartment of Geography and Geosciences, Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, GermanyDepartment of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, BangladeshDepartment of Geography and Geosciences, Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, GermanyXylem hydraulic adjustment to global climatic changes was reported from temperate, boreal, and Mediterranean tree species. Yet, the long-term hydraulic adjustment in tropical tree species has not been studied so far. Here we developed the first standard chronologies of three hydraulic trait variables for three South Asian moist forest tree species to analyze their long-term hydraulic responses to changing climate. Based on wood anatomical measurements, we calculated Hagen–Poiseuille hydraulically weighted vessel diameter (DH), potential specific hydraulic conductivity (KS), and vulnerability index (VX) and developed standard chronologies of these variables for Chukrasia tabularis, Toona ciliata, and Lagerstroemia speciosa which are different in their xylem structure, wood density, shade tolerance, growth rates, and habitat preferences. Bootstrap correlation analysis revealed that vapor pressure deficit (VPD) strongly positively influenced the xylem water transport capacity in C. tabularis, whereas T. ciliata was affected by both temperature and precipitation. The hydraulic conductivity of L. speciosa was mainly affected by temperature. Different adjustment strategies were observed among the species, probably due to the differences in life history strategies and xylem properties. No positive relationship of conductivity and radial growth was found, but a trade-off between hydraulic safety and efficiency was observed in all studied species.https://www.frontiersin.org/article/10.3389/fpls.2018.01761/fullBangladeshhydraulic conductivitytropical forestsclimate changehydraulic safetyxylem anatomy |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mahmuda Islam Mahmuda Islam Mizanur Rahman Mizanur Rahman Achim Bräuning |
spellingShingle |
Mahmuda Islam Mahmuda Islam Mizanur Rahman Mizanur Rahman Achim Bräuning Long-Term Hydraulic Adjustment of Three Tropical Moist Forest Tree Species to Changing Climate Frontiers in Plant Science Bangladesh hydraulic conductivity tropical forests climate change hydraulic safety xylem anatomy |
author_facet |
Mahmuda Islam Mahmuda Islam Mizanur Rahman Mizanur Rahman Achim Bräuning |
author_sort |
Mahmuda Islam |
title |
Long-Term Hydraulic Adjustment of Three Tropical Moist Forest Tree Species to Changing Climate |
title_short |
Long-Term Hydraulic Adjustment of Three Tropical Moist Forest Tree Species to Changing Climate |
title_full |
Long-Term Hydraulic Adjustment of Three Tropical Moist Forest Tree Species to Changing Climate |
title_fullStr |
Long-Term Hydraulic Adjustment of Three Tropical Moist Forest Tree Species to Changing Climate |
title_full_unstemmed |
Long-Term Hydraulic Adjustment of Three Tropical Moist Forest Tree Species to Changing Climate |
title_sort |
long-term hydraulic adjustment of three tropical moist forest tree species to changing climate |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Plant Science |
issn |
1664-462X |
publishDate |
2018-12-01 |
description |
Xylem hydraulic adjustment to global climatic changes was reported from temperate, boreal, and Mediterranean tree species. Yet, the long-term hydraulic adjustment in tropical tree species has not been studied so far. Here we developed the first standard chronologies of three hydraulic trait variables for three South Asian moist forest tree species to analyze their long-term hydraulic responses to changing climate. Based on wood anatomical measurements, we calculated Hagen–Poiseuille hydraulically weighted vessel diameter (DH), potential specific hydraulic conductivity (KS), and vulnerability index (VX) and developed standard chronologies of these variables for Chukrasia tabularis, Toona ciliata, and Lagerstroemia speciosa which are different in their xylem structure, wood density, shade tolerance, growth rates, and habitat preferences. Bootstrap correlation analysis revealed that vapor pressure deficit (VPD) strongly positively influenced the xylem water transport capacity in C. tabularis, whereas T. ciliata was affected by both temperature and precipitation. The hydraulic conductivity of L. speciosa was mainly affected by temperature. Different adjustment strategies were observed among the species, probably due to the differences in life history strategies and xylem properties. No positive relationship of conductivity and radial growth was found, but a trade-off between hydraulic safety and efficiency was observed in all studied species. |
topic |
Bangladesh hydraulic conductivity tropical forests climate change hydraulic safety xylem anatomy |
url |
https://www.frontiersin.org/article/10.3389/fpls.2018.01761/full |
work_keys_str_mv |
AT mahmudaislam longtermhydraulicadjustmentofthreetropicalmoistforesttreespeciestochangingclimate AT mahmudaislam longtermhydraulicadjustmentofthreetropicalmoistforesttreespeciestochangingclimate AT mizanurrahman longtermhydraulicadjustmentofthreetropicalmoistforesttreespeciestochangingclimate AT mizanurrahman longtermhydraulicadjustmentofthreetropicalmoistforesttreespeciestochangingclimate AT achimbrauning longtermhydraulicadjustmentofthreetropicalmoistforesttreespeciestochangingclimate |
_version_ |
1724807322488799232 |