Stability of an Additive-Cubic-Quartic Functional Equation
In this paper, we consider the additive-cubic-quartic functional equation 11[f(x+2y)+f(x−2y)]=44[f(x+y)+f(x−y)]+12f(3y)−48f(2y)+60f(y)−66f(x) and prove the generalized Hyers-Ulam stability of the additive-cubic-quartic functional equation in Banach spaces....
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | Advances in Difference Equations |
Online Access: | http://dx.doi.org/10.1155/2009/395693 |
id |
doaj-96b53848678a4552869c810abdd3db12 |
---|---|
record_format |
Article |
spelling |
doaj-96b53848678a4552869c810abdd3db122020-11-25T01:37:17ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472009-01-01200910.1155/2009/395693Stability of an Additive-Cubic-Quartic Functional EquationM. Eshaghi-GordjiS. Kaboli-GharetapehChoonkil ParkSomayyeh ZolfaghariIn this paper, we consider the additive-cubic-quartic functional equation 11[f(x+2y)+f(x−2y)]=44[f(x+y)+f(x−y)]+12f(3y)−48f(2y)+60f(y)−66f(x) and prove the generalized Hyers-Ulam stability of the additive-cubic-quartic functional equation in Banach spaces. http://dx.doi.org/10.1155/2009/395693 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. Eshaghi-Gordji S. Kaboli-Gharetapeh Choonkil Park Somayyeh Zolfaghari |
spellingShingle |
M. Eshaghi-Gordji S. Kaboli-Gharetapeh Choonkil Park Somayyeh Zolfaghari Stability of an Additive-Cubic-Quartic Functional Equation Advances in Difference Equations |
author_facet |
M. Eshaghi-Gordji S. Kaboli-Gharetapeh Choonkil Park Somayyeh Zolfaghari |
author_sort |
M. Eshaghi-Gordji |
title |
Stability of an Additive-Cubic-Quartic Functional Equation |
title_short |
Stability of an Additive-Cubic-Quartic Functional Equation |
title_full |
Stability of an Additive-Cubic-Quartic Functional Equation |
title_fullStr |
Stability of an Additive-Cubic-Quartic Functional Equation |
title_full_unstemmed |
Stability of an Additive-Cubic-Quartic Functional Equation |
title_sort |
stability of an additive-cubic-quartic functional equation |
publisher |
SpringerOpen |
series |
Advances in Difference Equations |
issn |
1687-1839 1687-1847 |
publishDate |
2009-01-01 |
description |
In this paper, we consider the additive-cubic-quartic functional equation 11[f(x+2y)+f(x−2y)]=44[f(x+y)+f(x−y)]+12f(3y)−48f(2y)+60f(y)−66f(x) and prove the generalized Hyers-Ulam stability of the additive-cubic-quartic functional equation in Banach spaces. |
url |
http://dx.doi.org/10.1155/2009/395693 |
work_keys_str_mv |
AT meshaghigordji stabilityofanadditivecubicquarticfunctionalequation AT skaboligharetapeh stabilityofanadditivecubicquarticfunctionalequation AT choonkilpark stabilityofanadditivecubicquarticfunctionalequation AT somayyehzolfaghari stabilityofanadditivecubicquarticfunctionalequation |
_version_ |
1725058643621052416 |