Stability of an Additive-Cubic-Quartic Functional Equation

In this paper, we consider the additive-cubic-quartic functional equation 11[f(x+2y)+f(x−2y)]=44[f(x+y)+f(x−y)]+12f(3y)−48f(2y)+60f(y)−66f(x) and prove the generalized Hyers-Ulam stability of the additive-cubic-quartic functional equation in Banach spaces....

Full description

Bibliographic Details
Main Authors: M. Eshaghi-Gordji, S. Kaboli-Gharetapeh, Choonkil Park, Somayyeh Zolfaghari
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:Advances in Difference Equations
Online Access:http://dx.doi.org/10.1155/2009/395693
id doaj-96b53848678a4552869c810abdd3db12
record_format Article
spelling doaj-96b53848678a4552869c810abdd3db122020-11-25T01:37:17ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472009-01-01200910.1155/2009/395693Stability of an Additive-Cubic-Quartic Functional EquationM. Eshaghi-GordjiS. Kaboli-GharetapehChoonkil ParkSomayyeh ZolfaghariIn this paper, we consider the additive-cubic-quartic functional equation 11[f(x+2y)+f(x−2y)]=44[f(x+y)+f(x−y)]+12f(3y)−48f(2y)+60f(y)−66f(x) and prove the generalized Hyers-Ulam stability of the additive-cubic-quartic functional equation in Banach spaces. http://dx.doi.org/10.1155/2009/395693
collection DOAJ
language English
format Article
sources DOAJ
author M. Eshaghi-Gordji
S. Kaboli-Gharetapeh
Choonkil Park
Somayyeh Zolfaghari
spellingShingle M. Eshaghi-Gordji
S. Kaboli-Gharetapeh
Choonkil Park
Somayyeh Zolfaghari
Stability of an Additive-Cubic-Quartic Functional Equation
Advances in Difference Equations
author_facet M. Eshaghi-Gordji
S. Kaboli-Gharetapeh
Choonkil Park
Somayyeh Zolfaghari
author_sort M. Eshaghi-Gordji
title Stability of an Additive-Cubic-Quartic Functional Equation
title_short Stability of an Additive-Cubic-Quartic Functional Equation
title_full Stability of an Additive-Cubic-Quartic Functional Equation
title_fullStr Stability of an Additive-Cubic-Quartic Functional Equation
title_full_unstemmed Stability of an Additive-Cubic-Quartic Functional Equation
title_sort stability of an additive-cubic-quartic functional equation
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1839
1687-1847
publishDate 2009-01-01
description In this paper, we consider the additive-cubic-quartic functional equation 11[f(x+2y)+f(x−2y)]=44[f(x+y)+f(x−y)]+12f(3y)−48f(2y)+60f(y)−66f(x) and prove the generalized Hyers-Ulam stability of the additive-cubic-quartic functional equation in Banach spaces.
url http://dx.doi.org/10.1155/2009/395693
work_keys_str_mv AT meshaghigordji stabilityofanadditivecubicquarticfunctionalequation
AT skaboligharetapeh stabilityofanadditivecubicquarticfunctionalequation
AT choonkilpark stabilityofanadditivecubicquarticfunctionalequation
AT somayyehzolfaghari stabilityofanadditivecubicquarticfunctionalequation
_version_ 1725058643621052416