Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension

Considering the Poincaré group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>S</mi><mi>O</mi><mo>(</mo><mi>d</mi><mo>−</...

Full description

Bibliographic Details
Main Authors: Ismael Ahlouche Lahlali, Nicolas Boulanger, Andrea Campoleoni
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/9/1749
id doaj-96642e1b0e374e8387cf1482aa61bbcd
record_format Article
spelling doaj-96642e1b0e374e8387cf1482aa61bbcd2021-09-26T01:31:48ZengMDPI AGSymmetry2073-89942021-09-01131749174910.3390/sym13091749Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any DimensionIsmael Ahlouche Lahlali0Nicolas Boulanger1Andrea Campoleoni2Physique de l’Univers, Champs et Gravitation, Université de Mons—UMONS, 20 Place du Parc, B-7000 Mons, BelgiumPhysique de l’Univers, Champs et Gravitation, Université de Mons—UMONS, 20 Place du Parc, B-7000 Mons, BelgiumPhysique de l’Univers, Champs et Gravitation, Université de Mons—UMONS, 20 Place du Parc, B-7000 Mons, BelgiumConsidering the Poincaré group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>S</mi><mi>O</mi><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula> in any dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>></mo><mn>3</mn><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula>, we characterise the coadjoint orbits that are associated with massive and massless particles of discrete spin. We also comment on how our analysis extends to the case of continuous spin.https://www.mdpi.com/2073-8994/13/9/1749coadjoint orbit methodunitary irreducible representations of the Poincaré group
collection DOAJ
language English
format Article
sources DOAJ
author Ismael Ahlouche Lahlali
Nicolas Boulanger
Andrea Campoleoni
spellingShingle Ismael Ahlouche Lahlali
Nicolas Boulanger
Andrea Campoleoni
Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension
Symmetry
coadjoint orbit method
unitary irreducible representations of the Poincaré group
author_facet Ismael Ahlouche Lahlali
Nicolas Boulanger
Andrea Campoleoni
author_sort Ismael Ahlouche Lahlali
title Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension
title_short Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension
title_full Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension
title_fullStr Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension
title_full_unstemmed Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension
title_sort coadjoint orbits of the poincaré group for discrete-spin particles in any dimension
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2021-09-01
description Considering the Poincaré group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>S</mi><mi>O</mi><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula> in any dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>></mo><mn>3</mn><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula>, we characterise the coadjoint orbits that are associated with massive and massless particles of discrete spin. We also comment on how our analysis extends to the case of continuous spin.
topic coadjoint orbit method
unitary irreducible representations of the Poincaré group
url https://www.mdpi.com/2073-8994/13/9/1749
work_keys_str_mv AT ismaelahlouchelahlali coadjointorbitsofthepoincaregroupfordiscretespinparticlesinanydimension
AT nicolasboulanger coadjointorbitsofthepoincaregroupfordiscretespinparticlesinanydimension
AT andreacampoleoni coadjointorbitsofthepoincaregroupfordiscretespinparticlesinanydimension
_version_ 1716868789805514752