Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension
Considering the Poincaré group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>S</mi><mi>O</mi><mo>(</mo><mi>d</mi><mo>−</...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/9/1749 |
id |
doaj-96642e1b0e374e8387cf1482aa61bbcd |
---|---|
record_format |
Article |
spelling |
doaj-96642e1b0e374e8387cf1482aa61bbcd2021-09-26T01:31:48ZengMDPI AGSymmetry2073-89942021-09-01131749174910.3390/sym13091749Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any DimensionIsmael Ahlouche Lahlali0Nicolas Boulanger1Andrea Campoleoni2Physique de l’Univers, Champs et Gravitation, Université de Mons—UMONS, 20 Place du Parc, B-7000 Mons, BelgiumPhysique de l’Univers, Champs et Gravitation, Université de Mons—UMONS, 20 Place du Parc, B-7000 Mons, BelgiumPhysique de l’Univers, Champs et Gravitation, Université de Mons—UMONS, 20 Place du Parc, B-7000 Mons, BelgiumConsidering the Poincaré group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>S</mi><mi>O</mi><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula> in any dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>></mo><mn>3</mn><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula>, we characterise the coadjoint orbits that are associated with massive and massless particles of discrete spin. We also comment on how our analysis extends to the case of continuous spin.https://www.mdpi.com/2073-8994/13/9/1749coadjoint orbit methodunitary irreducible representations of the Poincaré group |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ismael Ahlouche Lahlali Nicolas Boulanger Andrea Campoleoni |
spellingShingle |
Ismael Ahlouche Lahlali Nicolas Boulanger Andrea Campoleoni Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension Symmetry coadjoint orbit method unitary irreducible representations of the Poincaré group |
author_facet |
Ismael Ahlouche Lahlali Nicolas Boulanger Andrea Campoleoni |
author_sort |
Ismael Ahlouche Lahlali |
title |
Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension |
title_short |
Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension |
title_full |
Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension |
title_fullStr |
Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension |
title_full_unstemmed |
Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension |
title_sort |
coadjoint orbits of the poincaré group for discrete-spin particles in any dimension |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2021-09-01 |
description |
Considering the Poincaré group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>S</mi><mi>O</mi><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula> in any dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>></mo><mn>3</mn><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula>, we characterise the coadjoint orbits that are associated with massive and massless particles of discrete spin. We also comment on how our analysis extends to the case of continuous spin. |
topic |
coadjoint orbit method unitary irreducible representations of the Poincaré group |
url |
https://www.mdpi.com/2073-8994/13/9/1749 |
work_keys_str_mv |
AT ismaelahlouchelahlali coadjointorbitsofthepoincaregroupfordiscretespinparticlesinanydimension AT nicolasboulanger coadjointorbitsofthepoincaregroupfordiscretespinparticlesinanydimension AT andreacampoleoni coadjointorbitsofthepoincaregroupfordiscretespinparticlesinanydimension |
_version_ |
1716868789805514752 |