Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension

Considering the Poincaré group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>S</mi><mi>O</mi><mo>(</mo><mi>d</mi><mo>−</...

Full description

Bibliographic Details
Main Authors: Ismael Ahlouche Lahlali, Nicolas Boulanger, Andrea Campoleoni
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/9/1749
Description
Summary:Considering the Poincaré group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>S</mi><mi>O</mi><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula> in any dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>></mo><mn>3</mn><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula>, we characterise the coadjoint orbits that are associated with massive and massless particles of discrete spin. We also comment on how our analysis extends to the case of continuous spin.
ISSN:2073-8994