On the solvability of anti-periodic boundary value problems with impulses

In this paper, we are concerned with the existence of solutions for second order impulsive anti-periodic boundary value problem ${ \left \{\begin{array} {l} u''(t) + f(t,u(t),u'(t))=0, \quad t \not= t_k, \ t \in [0, T], \\ \triangle u(t_k) = I_k(u(t_k)), \quad k = 1, \cdots , m,...

Full description

Bibliographic Details
Main Author: Chuanzhi Bai
Format: Article
Language:English
Published: University of Szeged 2009-03-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=364
id doaj-965d68a624954edf84aa849671f19460
record_format Article
spelling doaj-965d68a624954edf84aa849671f194602021-07-14T07:21:20ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752009-03-0120091111510.14232/ejqtde.2009.1.11364On the solvability of anti-periodic boundary value problems with impulsesChuanzhi Bai0Huaiyin Normal University, Huaian, Jiangsu, P. R. ChinaIn this paper, we are concerned with the existence of solutions for second order impulsive anti-periodic boundary value problem ${ \left \{\begin{array} {l} u''(t) + f(t,u(t),u'(t))=0, \quad t \not= t_k, \ t \in [0, T], \\ \triangle u(t_k) = I_k(u(t_k)), \quad k = 1, \cdots , m, \\ \triangle u'(t_k) = I_k^*(u(t_k)), \quad k = 1, \cdots , m, \\ u(0) + u(T) = 0, \ u'(0) + u'(T) = 0. \end{array}\right.} $ New criteria are established based on Schaefer's fixed-point theorem.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=364
collection DOAJ
language English
format Article
sources DOAJ
author Chuanzhi Bai
spellingShingle Chuanzhi Bai
On the solvability of anti-periodic boundary value problems with impulses
Electronic Journal of Qualitative Theory of Differential Equations
author_facet Chuanzhi Bai
author_sort Chuanzhi Bai
title On the solvability of anti-periodic boundary value problems with impulses
title_short On the solvability of anti-periodic boundary value problems with impulses
title_full On the solvability of anti-periodic boundary value problems with impulses
title_fullStr On the solvability of anti-periodic boundary value problems with impulses
title_full_unstemmed On the solvability of anti-periodic boundary value problems with impulses
title_sort on the solvability of anti-periodic boundary value problems with impulses
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2009-03-01
description In this paper, we are concerned with the existence of solutions for second order impulsive anti-periodic boundary value problem ${ \left \{\begin{array} {l} u''(t) + f(t,u(t),u'(t))=0, \quad t \not= t_k, \ t \in [0, T], \\ \triangle u(t_k) = I_k(u(t_k)), \quad k = 1, \cdots , m, \\ \triangle u'(t_k) = I_k^*(u(t_k)), \quad k = 1, \cdots , m, \\ u(0) + u(T) = 0, \ u'(0) + u'(T) = 0. \end{array}\right.} $ New criteria are established based on Schaefer's fixed-point theorem.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=364
work_keys_str_mv AT chuanzhibai onthesolvabilityofantiperiodicboundaryvalueproblemswithimpulses
_version_ 1721303848556953600