Visual adaptation reveals an objective electrophysiological measure of high-level individual face discrimination

Abstract The ability to individualize faces is a fundamental human brain function. Following visual adaptation to one individual face, the suppressed neural response to this identity becomes discriminable from an unadapted facial identity at a neural population level. Here, we investigate a simple a...

Full description

Bibliographic Details
Main Authors: Talia L. Retter, Bruno Rossion
Format: Article
Language:English
Published: Nature Publishing Group 2017-06-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-017-03348-x
Description
Summary:Abstract The ability to individualize faces is a fundamental human brain function. Following visual adaptation to one individual face, the suppressed neural response to this identity becomes discriminable from an unadapted facial identity at a neural population level. Here, we investigate a simple and objective measure of individual face discrimination with electroencephalographic (EEG) frequency tagging following adaptation. In a first condition, (1) two facial identities are presented in alternation at a rate of six images per second (6 Hz; 3 Hz identity repetition rate) for a 20 s testing sequence, following 10-s adaptation to one of the facial identities; this results in a significant identity discrimination response at 3 Hz in the frequency domain of the EEG over right occipito-temporal channels, replicating our previous findings. Such a 3 Hz response is absent for two novel conditions, in which (2) the faces are inverted and (3) an identity physically equidistant from the two faces is adapted. These results indicate that low-level visual features present in inverted or unspecific facial identities are not sufficient to produce the adaptation effect found for upright facial stimuli, which appears to truly reflect identity-specific perceptual representations in the human brain.
ISSN:2045-2322