The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and Intercomparison
In this study, we compare the diurnal variation in stratospheric ozone of the MACC (Monitoring Atmospheric Composition and Climate) reanalysis, ECMWF Reanalysis Interim (ERA-Interim), and the free-running WACCM (Whole Atmosphere Community Climate Model). The diurnal variation of stratospheric ozone...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Atmosphere |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4433/12/5/625 |
id |
doaj-962c56be678442c78eaf40b33422edb0 |
---|---|
record_format |
Article |
spelling |
doaj-962c56be678442c78eaf40b33422edb02021-05-31T23:54:46ZengMDPI AGAtmosphere2073-44332021-05-011262562510.3390/atmos12050625The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and IntercomparisonAnsgar Schanz0Klemens Hocke1Niklaus Kämpfer2Simon Chabrillat3Antje Inness4Mathias Palm5Justus Notholt6Ian Boyd7Alan Parrish8Yasuko Kasai9Institute of Applied Physics, University of Bern, 3012 Bern, SwitzerlandInstitute of Applied Physics, University of Bern, 3012 Bern, SwitzerlandInstitute of Applied Physics, University of Bern, 3012 Bern, SwitzerlandBelgium Institute of Space Aeronomy, 1180 Brussels, BelgiumECMWF, Shinfield Park, Reading RG2 9AX, UKInstitute of Environmental Physics, University of Bremen, 28359 Bremen, GermanyInstitute of Environmental Physics, University of Bremen, 28359 Bremen, GermanyBC Scientific Consulting LLC (USA), Dunedin 9010, New ZealandDepartment of Astronomy, University of Massachusetts, Amherst, MA 01003-9305, USADepartment of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, JapanIn this study, we compare the diurnal variation in stratospheric ozone of the MACC (Monitoring Atmospheric Composition and Climate) reanalysis, ECMWF Reanalysis Interim (ERA-Interim), and the free-running WACCM (Whole Atmosphere Community Climate Model). The diurnal variation of stratospheric ozone results from photochemical and dynamical processes depending on altitude, latitude, and season. MACC reanalysis and WACCM use similar chemistry modules and calculate a similar diurnal cycle in ozone when it is caused by a photochemical variation. The results of the two model systems are confirmed by observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) experiment and three selected sites of the Network for Detection of Atmospheric Composition Change (NDACC) at Mauna Loa, Hawaii (tropics), Bern, Switzerland (midlatitudes), and Ny-Ålesund, Svalbard (high latitudes). On the other hand, the ozone product of ERA-Interim shows considerably less diurnal variation due to photochemical variations. The global maxima of diurnal variation occur at high latitudes in summer, e.g., near the Arctic NDACC site at Ny-Ålesund, Svalbard. The local OZORAM radiometer observes this effect in good agreement with MACC reanalysis and WACCM. The sensed diurnal variation at Ny-Ålesund is up to 8% (0.4 ppmv) due to photochemical variations in summer and negligible during the dynamically dominated winter. However, when dynamics play a major role for the diurnal ozone variation as in the lower stratosphere (100–20 hPa), the reanalysis models ERA-Interim and MACC which assimilate data from radiosondes and satellites outperform the free-running WACCM. Such a domain is the Antarctic polar winter where a surprising novel feature of diurnal variation is indicated by MACC reanalysis and ERA-Interim at the edge of the polar vortex. This effect accounts for up to 8% (0.4 ppmv) in both model systems. In summary, MACC reanalysis provides a global description of the diurnal variation of stratospheric ozone caused by dynamics and photochemical variations. This is of high interest for ozone trend analysis and other research which is based on merged satellite data or measurements at different local time.https://www.mdpi.com/2073-4433/12/5/625stratospheric ozonediurnal ozone cyclephotochemistrydynamicsreanalysisMACC |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ansgar Schanz Klemens Hocke Niklaus Kämpfer Simon Chabrillat Antje Inness Mathias Palm Justus Notholt Ian Boyd Alan Parrish Yasuko Kasai |
spellingShingle |
Ansgar Schanz Klemens Hocke Niklaus Kämpfer Simon Chabrillat Antje Inness Mathias Palm Justus Notholt Ian Boyd Alan Parrish Yasuko Kasai The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and Intercomparison Atmosphere stratospheric ozone diurnal ozone cycle photochemistry dynamics reanalysis MACC |
author_facet |
Ansgar Schanz Klemens Hocke Niklaus Kämpfer Simon Chabrillat Antje Inness Mathias Palm Justus Notholt Ian Boyd Alan Parrish Yasuko Kasai |
author_sort |
Ansgar Schanz |
title |
The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and Intercomparison |
title_short |
The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and Intercomparison |
title_full |
The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and Intercomparison |
title_fullStr |
The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and Intercomparison |
title_full_unstemmed |
The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and Intercomparison |
title_sort |
diurnal variation in stratospheric ozone from macc reanalysis, era-interim, waccm, and earth observation data: characteristics and intercomparison |
publisher |
MDPI AG |
series |
Atmosphere |
issn |
2073-4433 |
publishDate |
2021-05-01 |
description |
In this study, we compare the diurnal variation in stratospheric ozone of the MACC (Monitoring Atmospheric Composition and Climate) reanalysis, ECMWF Reanalysis Interim (ERA-Interim), and the free-running WACCM (Whole Atmosphere Community Climate Model). The diurnal variation of stratospheric ozone results from photochemical and dynamical processes depending on altitude, latitude, and season. MACC reanalysis and WACCM use similar chemistry modules and calculate a similar diurnal cycle in ozone when it is caused by a photochemical variation. The results of the two model systems are confirmed by observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) experiment and three selected sites of the Network for Detection of Atmospheric Composition Change (NDACC) at Mauna Loa, Hawaii (tropics), Bern, Switzerland (midlatitudes), and Ny-Ålesund, Svalbard (high latitudes). On the other hand, the ozone product of ERA-Interim shows considerably less diurnal variation due to photochemical variations. The global maxima of diurnal variation occur at high latitudes in summer, e.g., near the Arctic NDACC site at Ny-Ålesund, Svalbard. The local OZORAM radiometer observes this effect in good agreement with MACC reanalysis and WACCM. The sensed diurnal variation at Ny-Ålesund is up to 8% (0.4 ppmv) due to photochemical variations in summer and negligible during the dynamically dominated winter. However, when dynamics play a major role for the diurnal ozone variation as in the lower stratosphere (100–20 hPa), the reanalysis models ERA-Interim and MACC which assimilate data from radiosondes and satellites outperform the free-running WACCM. Such a domain is the Antarctic polar winter where a surprising novel feature of diurnal variation is indicated by MACC reanalysis and ERA-Interim at the edge of the polar vortex. This effect accounts for up to 8% (0.4 ppmv) in both model systems. In summary, MACC reanalysis provides a global description of the diurnal variation of stratospheric ozone caused by dynamics and photochemical variations. This is of high interest for ozone trend analysis and other research which is based on merged satellite data or measurements at different local time. |
topic |
stratospheric ozone diurnal ozone cycle photochemistry dynamics reanalysis MACC |
url |
https://www.mdpi.com/2073-4433/12/5/625 |
work_keys_str_mv |
AT ansgarschanz thediurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT klemenshocke thediurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT niklauskampfer thediurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT simonchabrillat thediurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT antjeinness thediurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT mathiaspalm thediurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT justusnotholt thediurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT ianboyd thediurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT alanparrish thediurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT yasukokasai thediurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT ansgarschanz diurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT klemenshocke diurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT niklauskampfer diurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT simonchabrillat diurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT antjeinness diurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT mathiaspalm diurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT justusnotholt diurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT ianboyd diurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT alanparrish diurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison AT yasukokasai diurnalvariationinstratosphericozonefrommaccreanalysiserainterimwaccmandearthobservationdatacharacteristicsandintercomparison |
_version_ |
1721416239325118464 |