Consideration of uncertainty of information on load and generation values under daily reconfiguration of primary distribution network
Intelligent electric networks make it possible to remotely control switchings, thus preventing overloads and enhancing reliability of power supply to consumers. In the paper, the daily reconfiguration of a primary distribution network is considered as a means to reduce energy losses in the network....
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2017-01-01
|
Series: | E3S Web of Conferences |
Online Access: | https://doi.org/10.1051/e3sconf/20172503005 |
Summary: | Intelligent electric networks make it possible to remotely control switchings, thus preventing overloads and enhancing reliability of power supply to consumers. In the paper, the daily reconfiguration of a primary distribution network is considered as a means to reduce energy losses in the network. An algorithm applied for the reconfiguration is based on the methods of the theory of graphs and includes a high-speed program for load flow calculation. The research is focused on the impact of renewable generation and active demand with loads changing depending on daily variation in electricity price on the reduction in losses at reconfiguration. An algorithm is proposed to optimize load curves of load-controlled consumers. The calculation of probabilistic load flows is applied to assess the impact of the uncertainty of nodal power forecast on energy loss reduction at reconfiguration. The results of the research demonstrate the effectiveness of the proposed approaches, and are illustrated by a 33-node test distribution network. |
---|---|
ISSN: | 2267-1242 |