GeoBoost: An Incremental Deep Learning Approach toward Global Mapping of Buildings from VHR Remote Sensing Images

Modern convolutional neural networks (CNNs) are often trained on pre-set data sets with a fixed size. As for the large-scale applications of satellite images, for example, global or regional mappings, these images are collected incrementally by multiple stages in general. In other words, the sizes o...

Full description

Bibliographic Details
Main Authors: Naisen Yang, Hong Tang
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/11/1794
Description
Summary:Modern convolutional neural networks (CNNs) are often trained on pre-set data sets with a fixed size. As for the large-scale applications of satellite images, for example, global or regional mappings, these images are collected incrementally by multiple stages in general. In other words, the sizes of training datasets might be increased for the tasks of mapping rather than be fixed beforehand. In this paper, we present a novel algorithm, called GeoBoost, for the incremental-learning tasks of semantic segmentation via convolutional neural networks. Specifically, the GeoBoost algorithm is trained in an end-to-end manner on the newly available data, and it does not decrease the performance of previously trained models. The effectiveness of the GeoBoost algorithm is verified on the large-scale data set of DREAM-B. This method avoids the need for training on the enlarged data set from scratch and would become more effective along with more available data.
ISSN:2072-4292