Multi-Step-Ahead Forecasting Model for Monthly Anchovy Catches Based on Wavelet Analysis

This paper presents a p-step-ahead forecasting strategy based on two stages to improve pelagic fish-catch time-series modeling by considering annual and interannual fluctuations for northern Chile (18°S–24°S). In the first stage, the stationary wavelet transform is used to separate the raw time seri...

Full description

Bibliographic Details
Main Authors: Nibaldo Rodríguez, Claudio Cubillos, José-Miguel Rubio
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/798464
Description
Summary:This paper presents a p-step-ahead forecasting strategy based on two stages to improve pelagic fish-catch time-series modeling by considering annual and interannual fluctuations for northern Chile (18°S–24°S). In the first stage, the stationary wavelet transform is used to separate the raw time series into an annual component and an interannual component, whereas the periodicities of each component are obtained using the Morlet wavelet power spectrum. In the second stage, a linear autoregressive model is constructed to predict each component and the unknown p-next values are forecasted by the addition of the two predicted components. We demonstrate the utility of the proposed forecasting model on monthly anchovy-catches time series for periods from January 1963 to December 2007. Empirical results obtained for 10-month-ahead forecasting showed the effectiveness of the proposed wavelet autoregressive strategy.
ISSN:1110-757X
1687-0042