On backward Kolmogorov equation related to CIR process

We consider the existence of a classical smooth solution to the backward Kolmogorov equation \[ \left\{\begin{array}{l@{\hskip10.0pt}l}\partial _{t}u(t,x)=Au(t,x),\hspace{1em}& x\ge 0,\hspace{2.5pt}t\in [0,T],\\{} u(0,x)=f(x),\hspace{1em}& x\ge 0,\end{array}\right.\] where A is the generator...

Full description

Bibliographic Details
Main Authors: Vigirdas Mackevičius, Gabrielė Mongirdaitė
Format: Article
Language:English
Published: VTeX 2018-03-01
Series:Modern Stochastics: Theory and Applications
Online Access:https://vmsta.vtex.vmt/doi/10.15559/18-VMSTA98
id doaj-95f41d3474f04f049d11093114763c3c
record_format Article
spelling doaj-95f41d3474f04f049d11093114763c3c2020-11-24T23:51:19ZengVTeXModern Stochastics: Theory and Applications2351-60462351-60542018-03-015111312710.15559/18-VMSTA98On backward Kolmogorov equation related to CIR processVigirdas Mackevičius0Gabrielė Mongirdaitė1Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius, LithuaniaInstitute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius, LithuaniaWe consider the existence of a classical smooth solution to the backward Kolmogorov equation \[ \left\{\begin{array}{l@{\hskip10.0pt}l}\partial _{t}u(t,x)=Au(t,x),\hspace{1em}& x\ge 0,\hspace{2.5pt}t\in [0,T],\\{} u(0,x)=f(x),\hspace{1em}& x\ge 0,\end{array}\right.\] where A is the generator of the CIR process, the solution to the stochastic differential equation \[ {X_{t}^{x}}=x+{\int _{0}^{t}}\theta \big(\kappa -{X_{s}^{x}}\big)\hspace{0.1667em}ds+\sigma {\int _{0}^{t}}\sqrt{{X_{s}^{x}}}\hspace{0.1667em}dB_{s},\hspace{1em}x\ge 0,\hspace{2.5pt}t\in [0,T],\] that is, $Af(x)=\theta (\kappa -x){f^{\prime }}(x)+\frac{1}{2}{\sigma }^{2}x{f^{\prime\prime }}(x)$, $x\ge 0$ ($\theta ,\kappa ,\sigma >0$). Alfonsi [1] showed that the equation has a smooth solution with partial derivatives of polynomial growth, provided that the initial function f is smooth with derivatives of polynomial growth. His proof was mainly based on the analytical formula for the transition density of the CIR process in the form of a rather complicated function series. In this paper, for a CIR process satisfying the condition ${\sigma }^{2}\le 4\theta \kappa $, we present a direct proof based on the representation of a CIR process in terms of a squared Bessel process and its additivity property.https://vmsta.vtex.vmt/doi/10.15559/18-VMSTA98
collection DOAJ
language English
format Article
sources DOAJ
author Vigirdas Mackevičius
Gabrielė Mongirdaitė
spellingShingle Vigirdas Mackevičius
Gabrielė Mongirdaitė
On backward Kolmogorov equation related to CIR process
Modern Stochastics: Theory and Applications
author_facet Vigirdas Mackevičius
Gabrielė Mongirdaitė
author_sort Vigirdas Mackevičius
title On backward Kolmogorov equation related to CIR process
title_short On backward Kolmogorov equation related to CIR process
title_full On backward Kolmogorov equation related to CIR process
title_fullStr On backward Kolmogorov equation related to CIR process
title_full_unstemmed On backward Kolmogorov equation related to CIR process
title_sort on backward kolmogorov equation related to cir process
publisher VTeX
series Modern Stochastics: Theory and Applications
issn 2351-6046
2351-6054
publishDate 2018-03-01
description We consider the existence of a classical smooth solution to the backward Kolmogorov equation \[ \left\{\begin{array}{l@{\hskip10.0pt}l}\partial _{t}u(t,x)=Au(t,x),\hspace{1em}& x\ge 0,\hspace{2.5pt}t\in [0,T],\\{} u(0,x)=f(x),\hspace{1em}& x\ge 0,\end{array}\right.\] where A is the generator of the CIR process, the solution to the stochastic differential equation \[ {X_{t}^{x}}=x+{\int _{0}^{t}}\theta \big(\kappa -{X_{s}^{x}}\big)\hspace{0.1667em}ds+\sigma {\int _{0}^{t}}\sqrt{{X_{s}^{x}}}\hspace{0.1667em}dB_{s},\hspace{1em}x\ge 0,\hspace{2.5pt}t\in [0,T],\] that is, $Af(x)=\theta (\kappa -x){f^{\prime }}(x)+\frac{1}{2}{\sigma }^{2}x{f^{\prime\prime }}(x)$, $x\ge 0$ ($\theta ,\kappa ,\sigma >0$). Alfonsi [1] showed that the equation has a smooth solution with partial derivatives of polynomial growth, provided that the initial function f is smooth with derivatives of polynomial growth. His proof was mainly based on the analytical formula for the transition density of the CIR process in the form of a rather complicated function series. In this paper, for a CIR process satisfying the condition ${\sigma }^{2}\le 4\theta \kappa $, we present a direct proof based on the representation of a CIR process in terms of a squared Bessel process and its additivity property.
url https://vmsta.vtex.vmt/doi/10.15559/18-VMSTA98
work_keys_str_mv AT vigirdasmackevicius onbackwardkolmogorovequationrelatedtocirprocess
AT gabrielemongirdaite onbackwardkolmogorovequationrelatedtocirprocess
_version_ 1725476394571399168