Molecular Approach to Generate Cu(II) Sites on Silica for the Selective Partial Oxidation of Methane
The selective partial oxidation of methane to methanol remains a great challenge in the field of catalysis. Cu-exchanged zeolites are promising materials, directly and selectively converting methane to methanol with high yield under cyclic conditions. However, the economic viability of these alumino...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | deu |
Published: |
Swiss Chemical Society
2020-04-01
|
Series: | CHIMIA |
Subjects: | |
Online Access: | https://www.ingentaconnect.com/contentone/scs/chimia/2020/00000074/00000004/art00005 |
id |
doaj-95ee31beb2954179aa18d8caf56797eb |
---|---|
record_format |
Article |
spelling |
doaj-95ee31beb2954179aa18d8caf56797eb2020-11-25T03:15:39ZdeuSwiss Chemical SocietyCHIMIA0009-42932673-24242020-04-0174423724010.2533/chimia.2020.237Molecular Approach to Generate Cu(II) Sites on Silica for the Selective Partial Oxidation of MethaneJordan Meyer0Mark A. Newton1Jeoren A. van Bokhoven2Christophe Copéret3Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, CH-8093 Zurich, SwitzerlandDepartment of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, CH-8093 Zurich, SwitzerlandDepartment of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, CH-8093 Zurich, Switzerland; Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, CH-5232 Villigen, SwitzerlandDepartment of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, CH-8093 Zurich, SwitzerlandThe selective partial oxidation of methane to methanol remains a great challenge in the field of catalysis. Cu-exchanged zeolites are promising materials, directly and selectively converting methane to methanol with high yield under cyclic conditions. However, the economic viability of these aluminosilicate materials for potential industrial applications remains a challenge. Exploring copper supported on non-microporous oxide supports and rationalising the structure/reactivity relationships extends the scope of material investigation and opens new possibilities. Recently, copper on alumina was demonstrated to be active and selective for the partial oxidation of methane. This work aims to explore the formation of well-defined Cu(II) oxo species on silica via surface organometallic chemistry and examines their reactivity for the selective transformation of methane to methanol. Isolated Cu(II) sites were generated via grafting of a tailored molecular precursor. Activation under oxidative conditions and subsequent removal of organic moieties from the grafted copper centres led to the formation of small copper (II) oxide clusters, which are active in the partial oxidation of methane under mild conditions, albeit significantly less efficient than the corresponding isolated Cu(II) sites on alumina.https://www.ingentaconnect.com/contentone/scs/chimia/2020/00000074/00000004/art00005coppermolecular approachoxide supportpartial oxidation of methanesurface organometallic chemistry |
collection |
DOAJ |
language |
deu |
format |
Article |
sources |
DOAJ |
author |
Jordan Meyer Mark A. Newton Jeoren A. van Bokhoven Christophe Copéret |
spellingShingle |
Jordan Meyer Mark A. Newton Jeoren A. van Bokhoven Christophe Copéret Molecular Approach to Generate Cu(II) Sites on Silica for the Selective Partial Oxidation of Methane CHIMIA copper molecular approach oxide support partial oxidation of methane surface organometallic chemistry |
author_facet |
Jordan Meyer Mark A. Newton Jeoren A. van Bokhoven Christophe Copéret |
author_sort |
Jordan Meyer |
title |
Molecular Approach to Generate Cu(II) Sites on Silica for the Selective Partial Oxidation of Methane |
title_short |
Molecular Approach to Generate Cu(II) Sites on Silica for the Selective Partial Oxidation of Methane |
title_full |
Molecular Approach to Generate Cu(II) Sites on Silica for the Selective Partial Oxidation of Methane |
title_fullStr |
Molecular Approach to Generate Cu(II) Sites on Silica for the Selective Partial Oxidation of Methane |
title_full_unstemmed |
Molecular Approach to Generate Cu(II) Sites on Silica for the Selective Partial Oxidation of Methane |
title_sort |
molecular approach to generate cu(ii) sites on silica for the selective partial oxidation of methane |
publisher |
Swiss Chemical Society |
series |
CHIMIA |
issn |
0009-4293 2673-2424 |
publishDate |
2020-04-01 |
description |
The selective partial oxidation of methane to methanol remains a great challenge in the field of catalysis. Cu-exchanged zeolites are promising materials, directly and selectively converting methane to methanol with high yield under cyclic conditions. However, the economic viability of these aluminosilicate materials for potential industrial applications remains a challenge. Exploring copper supported on non-microporous oxide supports and rationalising the structure/reactivity relationships extends the scope of material investigation and opens new possibilities. Recently, copper on alumina was demonstrated to be active and selective for the partial oxidation of methane. This work aims to explore the formation of well-defined Cu(II) oxo species on silica via surface organometallic chemistry and examines their reactivity for the selective transformation of methane to methanol. Isolated Cu(II) sites were generated via grafting of a tailored molecular precursor. Activation under oxidative conditions and subsequent removal of organic moieties from the grafted copper centres led to the formation of small copper (II) oxide clusters, which are active in the partial oxidation of methane under mild conditions, albeit significantly less efficient than the corresponding isolated Cu(II) sites on alumina. |
topic |
copper molecular approach oxide support partial oxidation of methane surface organometallic chemistry |
url |
https://www.ingentaconnect.com/contentone/scs/chimia/2020/00000074/00000004/art00005 |
work_keys_str_mv |
AT jordanmeyer molecularapproachtogeneratecuiisitesonsilicafortheselectivepartialoxidationofmethane AT markanewton molecularapproachtogeneratecuiisitesonsilicafortheselectivepartialoxidationofmethane AT jeorenavanbokhoven molecularapproachtogeneratecuiisitesonsilicafortheselectivepartialoxidationofmethane AT christophecoperet molecularapproachtogeneratecuiisitesonsilicafortheselectivepartialoxidationofmethane |
_version_ |
1724638275635773440 |