Simulation Model of Bottom Hole Dynamic Pressure and Reservoir Dynamic Stress in Hydraulic Fracturing with Pulse Injection
To study the mechanism of hydraulic fracturing with pulse injection theoretically, in this paper, the transient flow model of fracturing fluid in the pipe string was established, and it was solved by method of characteristics and finite difference method, respectively. Furthermore, the elastodynamic...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/2906973 |
id |
doaj-95ebfd1b85c94f1493d9a4ceb560d4e0 |
---|---|
record_format |
Article |
spelling |
doaj-95ebfd1b85c94f1493d9a4ceb560d4e02020-11-25T03:59:43ZengHindawi LimitedMathematical Problems in Engineering1024-123X1563-51472020-01-01202010.1155/2020/29069732906973Simulation Model of Bottom Hole Dynamic Pressure and Reservoir Dynamic Stress in Hydraulic Fracturing with Pulse InjectionGe Zhu0Shimin Dong1School of Mechanical Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, ChinaSchool of Mechanical Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, ChinaTo study the mechanism of hydraulic fracturing with pulse injection theoretically, in this paper, the transient flow model of fracturing fluid in the pipe string was established, and it was solved by method of characteristics and finite difference method, respectively. Furthermore, the elastodynamic model of reservoir was also established. Based on the finite element method, the dynamic stress distribution in the reservoir was simulated and calculated. In addition, the influence of parameters in the pulse injection scheme on dynamic stress was analyzed. The results indicate that the unsteady injection produces a pulse pressure wave at the wellhead. The pressure wave propagates along the pipe string to the bottom of the well, and its amplitude attenuates due to the resistance loss. When the pressure wave propagates to the bottom of the well, it will be reflected and there is a superposition area of the downward pressure wave and upward reflection wave near the bottom hole. The bottom hole pressure of pulse injection is the sum of stable injection pressure and the above pressure wave. Simultaneously, this fluid pressure with pulse variation will stimulate reservoir to produce dynamic stress in its interior. The pulse adjustment time and adjustment amplitude in the injection scheme have a significant impact on the dynamic stress. The results of this paper are helpful to understand the mechanism of hydraulic fracturing with pulse fluid injection and provide guidance for its parameter design.http://dx.doi.org/10.1155/2020/2906973 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ge Zhu Shimin Dong |
spellingShingle |
Ge Zhu Shimin Dong Simulation Model of Bottom Hole Dynamic Pressure and Reservoir Dynamic Stress in Hydraulic Fracturing with Pulse Injection Mathematical Problems in Engineering |
author_facet |
Ge Zhu Shimin Dong |
author_sort |
Ge Zhu |
title |
Simulation Model of Bottom Hole Dynamic Pressure and Reservoir Dynamic Stress in Hydraulic Fracturing with Pulse Injection |
title_short |
Simulation Model of Bottom Hole Dynamic Pressure and Reservoir Dynamic Stress in Hydraulic Fracturing with Pulse Injection |
title_full |
Simulation Model of Bottom Hole Dynamic Pressure and Reservoir Dynamic Stress in Hydraulic Fracturing with Pulse Injection |
title_fullStr |
Simulation Model of Bottom Hole Dynamic Pressure and Reservoir Dynamic Stress in Hydraulic Fracturing with Pulse Injection |
title_full_unstemmed |
Simulation Model of Bottom Hole Dynamic Pressure and Reservoir Dynamic Stress in Hydraulic Fracturing with Pulse Injection |
title_sort |
simulation model of bottom hole dynamic pressure and reservoir dynamic stress in hydraulic fracturing with pulse injection |
publisher |
Hindawi Limited |
series |
Mathematical Problems in Engineering |
issn |
1024-123X 1563-5147 |
publishDate |
2020-01-01 |
description |
To study the mechanism of hydraulic fracturing with pulse injection theoretically, in this paper, the transient flow model of fracturing fluid in the pipe string was established, and it was solved by method of characteristics and finite difference method, respectively. Furthermore, the elastodynamic model of reservoir was also established. Based on the finite element method, the dynamic stress distribution in the reservoir was simulated and calculated. In addition, the influence of parameters in the pulse injection scheme on dynamic stress was analyzed. The results indicate that the unsteady injection produces a pulse pressure wave at the wellhead. The pressure wave propagates along the pipe string to the bottom of the well, and its amplitude attenuates due to the resistance loss. When the pressure wave propagates to the bottom of the well, it will be reflected and there is a superposition area of the downward pressure wave and upward reflection wave near the bottom hole. The bottom hole pressure of pulse injection is the sum of stable injection pressure and the above pressure wave. Simultaneously, this fluid pressure with pulse variation will stimulate reservoir to produce dynamic stress in its interior. The pulse adjustment time and adjustment amplitude in the injection scheme have a significant impact on the dynamic stress. The results of this paper are helpful to understand the mechanism of hydraulic fracturing with pulse fluid injection and provide guidance for its parameter design. |
url |
http://dx.doi.org/10.1155/2020/2906973 |
work_keys_str_mv |
AT gezhu simulationmodelofbottomholedynamicpressureandreservoirdynamicstressinhydraulicfracturingwithpulseinjection AT shimindong simulationmodelofbottomholedynamicpressureandreservoirdynamicstressinhydraulicfracturingwithpulseinjection |
_version_ |
1715071868166209536 |