Summary: | Preplacement of compensatory tissue repair (CTR) by exposure to a nonlethal dose of a toxicant protects animals against a lethal dose of another toxicant. Although CTR is known to heteroprotect, the underlying molecular mechanisms are not completely known. Here, we investigated the mechanisms of heteroprotection using thioacetamide (TA): acetaminophen (APAP) heteroprotection model. Male Swiss Webster mice received a low dose of TA or distilled water (DW) vehicle 24 hours prior to a lethal dose of APAP. Liver injury, tissue repair, and promitogenic signaling were studied over a time course of 24 hours after APAP overdose to the TA- and DW-primed mice (TA + APAP and DW + APAP, respectively). Thioacetamide pretreatment afforded 100% protection against APAP overdose compared to 100% lethality in the DW + APAP-treated mice. Although hepatic Cyp2e1 was similar at the time of APAP administration, immediate activation of hepatic c-Jun N-terminal kinases (JNK) was observed in the TA + APAP-treated mice compared to its delayed activation in the DW + APAP group. In contrast to the DW + APAP group, the TA + APAP-treated mice exhibited extensive CTR, which was secondary to the timely activation of Wnt/β-catenin pathway. Our data indicate that rapid activation and appropriate termination of Wnt/β-catenin signaling and modulation of JNK activity underlie TA + APAP heteroprotection.
|