ON STRONGLY CONDENSING OPERATORS AT INFINITY

The paper introduces the notion of an operator strongly condensing at infinity, which is a natural variation of the notion of a locally strongly condensing operator at a finite point (introduced by the author earlier). It turns out that if such an operator is asymptotically linear, then its asymptot...

Full description

Bibliographic Details
Main Author: N. A. Erzakova
Format: Article
Language:Russian
Published: Moscow State Technical University of Civil Aviation 2016-11-01
Series:Naučnyj Vestnik MGTU GA
Subjects:
Online Access:https://avia.mstuca.ru/jour/article/view/240
id doaj-95e6abb0acfe4f12906c223e542f267d
record_format Article
spelling doaj-95e6abb0acfe4f12906c223e542f267d2021-07-28T21:00:33ZrusMoscow State Technical University of Civil Aviation Naučnyj Vestnik MGTU GA2079-06192542-01192016-11-010207110117240ON STRONGLY CONDENSING OPERATORS AT INFINITYN. A. Erzakova0МГТУ ГАThe paper introduces the notion of an operator strongly condensing at infinity, which is a natural variation of the notion of a locally strongly condensing operator at a finite point (introduced by the author earlier). It turns out that if such an operator is asymptotically linear, then its asymptotic derivative is compact. In particular, this notion allows to build examples of operators that are neither compact, nor condensing, not even -bounded. Such operators form a linear space. Some applications of the notion to the theory of bifurcation points are discussed.https://avia.mstuca.ru/jour/article/view/240мера некомпактностиуплотняющий операторлокально сильно уплотняющий операторасимптотически линейный операторасимптотическая производнаяточка бифуркации
collection DOAJ
language Russian
format Article
sources DOAJ
author N. A. Erzakova
spellingShingle N. A. Erzakova
ON STRONGLY CONDENSING OPERATORS AT INFINITY
Naučnyj Vestnik MGTU GA
мера некомпактности
уплотняющий оператор
локально сильно уплотняющий оператор
асимптотически линейный оператор
асимптотическая производная
точка бифуркации
author_facet N. A. Erzakova
author_sort N. A. Erzakova
title ON STRONGLY CONDENSING OPERATORS AT INFINITY
title_short ON STRONGLY CONDENSING OPERATORS AT INFINITY
title_full ON STRONGLY CONDENSING OPERATORS AT INFINITY
title_fullStr ON STRONGLY CONDENSING OPERATORS AT INFINITY
title_full_unstemmed ON STRONGLY CONDENSING OPERATORS AT INFINITY
title_sort on strongly condensing operators at infinity
publisher Moscow State Technical University of Civil Aviation
series Naučnyj Vestnik MGTU GA
issn 2079-0619
2542-0119
publishDate 2016-11-01
description The paper introduces the notion of an operator strongly condensing at infinity, which is a natural variation of the notion of a locally strongly condensing operator at a finite point (introduced by the author earlier). It turns out that if such an operator is asymptotically linear, then its asymptotic derivative is compact. In particular, this notion allows to build examples of operators that are neither compact, nor condensing, not even -bounded. Such operators form a linear space. Some applications of the notion to the theory of bifurcation points are discussed.
topic мера некомпактности
уплотняющий оператор
локально сильно уплотняющий оператор
асимптотически линейный оператор
асимптотическая производная
точка бифуркации
url https://avia.mstuca.ru/jour/article/view/240
work_keys_str_mv AT naerzakova onstronglycondensingoperatorsatinfinity
_version_ 1721263820518719488