ON STRONGLY CONDENSING OPERATORS AT INFINITY
The paper introduces the notion of an operator strongly condensing at infinity, which is a natural variation of the notion of a locally strongly condensing operator at a finite point (introduced by the author earlier). It turns out that if such an operator is asymptotically linear, then its asymptot...
Main Author: | |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Moscow State Technical University of Civil Aviation
2016-11-01
|
Series: | Naučnyj Vestnik MGTU GA |
Subjects: | |
Online Access: | https://avia.mstuca.ru/jour/article/view/240 |
id |
doaj-95e6abb0acfe4f12906c223e542f267d |
---|---|
record_format |
Article |
spelling |
doaj-95e6abb0acfe4f12906c223e542f267d2021-07-28T21:00:33ZrusMoscow State Technical University of Civil Aviation Naučnyj Vestnik MGTU GA2079-06192542-01192016-11-010207110117240ON STRONGLY CONDENSING OPERATORS AT INFINITYN. A. Erzakova0МГТУ ГАThe paper introduces the notion of an operator strongly condensing at infinity, which is a natural variation of the notion of a locally strongly condensing operator at a finite point (introduced by the author earlier). It turns out that if such an operator is asymptotically linear, then its asymptotic derivative is compact. In particular, this notion allows to build examples of operators that are neither compact, nor condensing, not even -bounded. Such operators form a linear space. Some applications of the notion to the theory of bifurcation points are discussed.https://avia.mstuca.ru/jour/article/view/240мера некомпактностиуплотняющий операторлокально сильно уплотняющий операторасимптотически линейный операторасимптотическая производнаяточка бифуркации |
collection |
DOAJ |
language |
Russian |
format |
Article |
sources |
DOAJ |
author |
N. A. Erzakova |
spellingShingle |
N. A. Erzakova ON STRONGLY CONDENSING OPERATORS AT INFINITY Naučnyj Vestnik MGTU GA мера некомпактности уплотняющий оператор локально сильно уплотняющий оператор асимптотически линейный оператор асимптотическая производная точка бифуркации |
author_facet |
N. A. Erzakova |
author_sort |
N. A. Erzakova |
title |
ON STRONGLY CONDENSING OPERATORS AT INFINITY |
title_short |
ON STRONGLY CONDENSING OPERATORS AT INFINITY |
title_full |
ON STRONGLY CONDENSING OPERATORS AT INFINITY |
title_fullStr |
ON STRONGLY CONDENSING OPERATORS AT INFINITY |
title_full_unstemmed |
ON STRONGLY CONDENSING OPERATORS AT INFINITY |
title_sort |
on strongly condensing operators at infinity |
publisher |
Moscow State Technical University of Civil Aviation |
series |
Naučnyj Vestnik MGTU GA |
issn |
2079-0619 2542-0119 |
publishDate |
2016-11-01 |
description |
The paper introduces the notion of an operator strongly condensing at infinity, which is a natural variation of the notion of a locally strongly condensing operator at a finite point (introduced by the author earlier). It turns out that if such an operator is asymptotically linear, then its asymptotic derivative is compact. In particular, this notion allows to build examples of operators that are neither compact, nor condensing, not even -bounded. Such operators form a linear space. Some applications of the notion to the theory of bifurcation points are discussed. |
topic |
мера некомпактности уплотняющий оператор локально сильно уплотняющий оператор асимптотически линейный оператор асимптотическая производная точка бифуркации |
url |
https://avia.mstuca.ru/jour/article/view/240 |
work_keys_str_mv |
AT naerzakova onstronglycondensingoperatorsatinfinity |
_version_ |
1721263820518719488 |