Enhanced two-photon photoluminescence assisted by multi-resonant characteristics of a gold nanocylinder

Multi-resonant plasmonic simple geometries like nanocylinders and nanorods are highly interesting for two-photon photoluminescence and second harmonic generation applications, due to their easy fabrication and reproducibility in comparison with complex multi-resonant systems like dimers or nanoclust...

Full description

Bibliographic Details
Main Authors: Movsesyan Artur, Lamri Gwénaëlle, Kostcheev Sergei, Horneber Anke, Bräuer Annika, Meixner Alfred J., Fleischer Monika, Zhang Dai, Baudrion Anne-Laure, Adam Pierre-Michel
Format: Article
Language:English
Published: De Gruyter 2020-07-01
Series:Nanophotonics
Subjects:
Online Access:https://doi.org/10.1515/nanoph-2020-0213
Description
Summary:Multi-resonant plasmonic simple geometries like nanocylinders and nanorods are highly interesting for two-photon photoluminescence and second harmonic generation applications, due to their easy fabrication and reproducibility in comparison with complex multi-resonant systems like dimers or nanoclusters. We demonstrate experimentally that by using a simple gold nanocylinder we can achieve a double resonantly enhanced two-photon photoluminescence of quantum dots, by matching the excitation wavelength of the quantum dots with a dipolar plasmon mode, while the emission is coupled with a radiative quadrupolar mode. We establish a method to separate experimentally the enhancement factor at the excitation and at the emission wavelengths for this double resonant system. The sensitivity of the spectral positions of the dipolar and quadrupolar plasmon resonances to the ellipticity of the nanocylinders and its impact on the two-photon photoluminescence enhancement are discussed.
ISSN:2192-8606
2192-8614