Effects of Perturbation Velocity, Direction, Background Muscle Activation, and Task Instruction on Long-Latency Responses Measured From Forearm Muscles

The central nervous system uses feedback processes that occur at multiple time scales to control interactions with the environment. The long-latency response (LLR) is the fastest process that directly involves cortical areas, with a motoneuron response measurable 50 ms following an imposed limb disp...

Full description

Bibliographic Details
Main Authors: Jacob Weinman, Paria Arfa-Fatollahkhani, Andrea Zonnino, Rebecca C. Nikonowicz, Fabrizio Sergi
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-04-01
Series:Frontiers in Human Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnhum.2021.639773/full
id doaj-95ca49e8f99f4035bdbf0bf524beed92
record_format Article
spelling doaj-95ca49e8f99f4035bdbf0bf524beed922021-04-16T04:27:30ZengFrontiers Media S.A.Frontiers in Human Neuroscience1662-51612021-04-011510.3389/fnhum.2021.639773639773Effects of Perturbation Velocity, Direction, Background Muscle Activation, and Task Instruction on Long-Latency Responses Measured From Forearm MusclesJacob WeinmanParia Arfa-FatollahkhaniAndrea ZonninoRebecca C. NikonowiczFabrizio SergiThe central nervous system uses feedback processes that occur at multiple time scales to control interactions with the environment. The long-latency response (LLR) is the fastest process that directly involves cortical areas, with a motoneuron response measurable 50 ms following an imposed limb displacement. Several behavioral factors concerning perturbation mechanics and the active role of muscles prior or during the perturbation can modulate the long-latency response amplitude (LLRa) in the upper limbs, but the interactions among many of these factors had not been systematically studied before. We conducted a behavioral study on thirteen healthy individuals to determine the effect and interaction of four behavioral factors – background muscle torque, perturbation direction, perturbation velocity, and task instruction – on the LLRa evoked from the flexor carpi radialis (FCR) and extensor carpi ulnaris (ECU) muscles after velocity-controlled wrist displacements. The effects of the four factors were quantified using both a 0D statistical analysis on the average perturbation-evoked EMG signal in the period corresponding to an LLR, and using a timeseries analysis of EMG signals. All factors significantly modulated LLRa, and their combination nonlinearly contributed to modulating the LLRa. Specifically, all the three-way interaction terms that could be computed without including the interaction between instruction and velocity significantly modulated the LLR. Analysis of the three-way interaction terms of the 0D model indicated that for the ECU muscle, the LLRa evoked when subjects are asked to maintain their muscle activation in response to the perturbations was greater than the one observed when subjects yielded to the perturbations (p < 0.001), but this effect was not measured for muscles undergoing shortening or in absence of background muscle activation. Moreover, higher perturbation velocity increased the LLRa evoked from the stretched muscle in presence of a background torque (p < 0.001), but no effects of velocity were measured in absence of background torque. Also, our analysis identified significant modulations of LLRa in muscles shortened by the perturbation, including an interaction between torque and velocity, and an effect of both torque and velocity. The time-series analysis indicated the significance of additional transient effects in the LLR region for muscles undergoing shortening.https://www.frontiersin.org/articles/10.3389/fnhum.2021.639773/fullstretch reflexlong latency responsesmotor neurophysiologyelectromyographyrobotics
collection DOAJ
language English
format Article
sources DOAJ
author Jacob Weinman
Paria Arfa-Fatollahkhani
Andrea Zonnino
Rebecca C. Nikonowicz
Fabrizio Sergi
spellingShingle Jacob Weinman
Paria Arfa-Fatollahkhani
Andrea Zonnino
Rebecca C. Nikonowicz
Fabrizio Sergi
Effects of Perturbation Velocity, Direction, Background Muscle Activation, and Task Instruction on Long-Latency Responses Measured From Forearm Muscles
Frontiers in Human Neuroscience
stretch reflex
long latency responses
motor neurophysiology
electromyography
robotics
author_facet Jacob Weinman
Paria Arfa-Fatollahkhani
Andrea Zonnino
Rebecca C. Nikonowicz
Fabrizio Sergi
author_sort Jacob Weinman
title Effects of Perturbation Velocity, Direction, Background Muscle Activation, and Task Instruction on Long-Latency Responses Measured From Forearm Muscles
title_short Effects of Perturbation Velocity, Direction, Background Muscle Activation, and Task Instruction on Long-Latency Responses Measured From Forearm Muscles
title_full Effects of Perturbation Velocity, Direction, Background Muscle Activation, and Task Instruction on Long-Latency Responses Measured From Forearm Muscles
title_fullStr Effects of Perturbation Velocity, Direction, Background Muscle Activation, and Task Instruction on Long-Latency Responses Measured From Forearm Muscles
title_full_unstemmed Effects of Perturbation Velocity, Direction, Background Muscle Activation, and Task Instruction on Long-Latency Responses Measured From Forearm Muscles
title_sort effects of perturbation velocity, direction, background muscle activation, and task instruction on long-latency responses measured from forearm muscles
publisher Frontiers Media S.A.
series Frontiers in Human Neuroscience
issn 1662-5161
publishDate 2021-04-01
description The central nervous system uses feedback processes that occur at multiple time scales to control interactions with the environment. The long-latency response (LLR) is the fastest process that directly involves cortical areas, with a motoneuron response measurable 50 ms following an imposed limb displacement. Several behavioral factors concerning perturbation mechanics and the active role of muscles prior or during the perturbation can modulate the long-latency response amplitude (LLRa) in the upper limbs, but the interactions among many of these factors had not been systematically studied before. We conducted a behavioral study on thirteen healthy individuals to determine the effect and interaction of four behavioral factors – background muscle torque, perturbation direction, perturbation velocity, and task instruction – on the LLRa evoked from the flexor carpi radialis (FCR) and extensor carpi ulnaris (ECU) muscles after velocity-controlled wrist displacements. The effects of the four factors were quantified using both a 0D statistical analysis on the average perturbation-evoked EMG signal in the period corresponding to an LLR, and using a timeseries analysis of EMG signals. All factors significantly modulated LLRa, and their combination nonlinearly contributed to modulating the LLRa. Specifically, all the three-way interaction terms that could be computed without including the interaction between instruction and velocity significantly modulated the LLR. Analysis of the three-way interaction terms of the 0D model indicated that for the ECU muscle, the LLRa evoked when subjects are asked to maintain their muscle activation in response to the perturbations was greater than the one observed when subjects yielded to the perturbations (p < 0.001), but this effect was not measured for muscles undergoing shortening or in absence of background muscle activation. Moreover, higher perturbation velocity increased the LLRa evoked from the stretched muscle in presence of a background torque (p < 0.001), but no effects of velocity were measured in absence of background torque. Also, our analysis identified significant modulations of LLRa in muscles shortened by the perturbation, including an interaction between torque and velocity, and an effect of both torque and velocity. The time-series analysis indicated the significance of additional transient effects in the LLR region for muscles undergoing shortening.
topic stretch reflex
long latency responses
motor neurophysiology
electromyography
robotics
url https://www.frontiersin.org/articles/10.3389/fnhum.2021.639773/full
work_keys_str_mv AT jacobweinman effectsofperturbationvelocitydirectionbackgroundmuscleactivationandtaskinstructiononlonglatencyresponsesmeasuredfromforearmmuscles
AT pariaarfafatollahkhani effectsofperturbationvelocitydirectionbackgroundmuscleactivationandtaskinstructiononlonglatencyresponsesmeasuredfromforearmmuscles
AT andreazonnino effectsofperturbationvelocitydirectionbackgroundmuscleactivationandtaskinstructiononlonglatencyresponsesmeasuredfromforearmmuscles
AT rebeccacnikonowicz effectsofperturbationvelocitydirectionbackgroundmuscleactivationandtaskinstructiononlonglatencyresponsesmeasuredfromforearmmuscles
AT fabriziosergi effectsofperturbationvelocitydirectionbackgroundmuscleactivationandtaskinstructiononlonglatencyresponsesmeasuredfromforearmmuscles
_version_ 1721525694377230336