Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation data

The Kalsi-Chakrata road corridor, located in the Lesser Himalayas, experiences several landslides every year, resulting in a considerable amount of damage to roads, assets, and other infrastructure and even loss of lives. During the monsoon season (June–August), the disruption of routes due to lands...

Full description

Bibliographic Details
Main Authors: Ujjwal Sur, Prafull Singh, Sansar Raj Meena
Format: Article
Language:English
Published: Taylor & Francis Group 2020-01-01
Series:Geomatics, Natural Hazards & Risk
Subjects:
gis
Online Access:http://dx.doi.org/10.1080/19475705.2020.1836038
id doaj-95a501fb88d04a83826624b90ec34755
record_format Article
spelling doaj-95a501fb88d04a83826624b90ec347552021-01-04T18:02:35ZengTaylor & Francis GroupGeomatics, Natural Hazards & Risk1947-57051947-57132020-01-011112176220910.1080/19475705.2020.18360381836038Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation dataUjjwal Sur0Prafull Singh1Sansar Raj Meena2Amity Institute of Geo-Informatics and Remote Sensing, Amity University-Sector 125Amity Institute of Geo-Informatics and Remote Sensing, Amity University-Sector 125Department of Geoinformatics—Z_GIS, University of SalzburgThe Kalsi-Chakrata road corridor, located in the Lesser Himalayas, experiences several landslides every year, resulting in a considerable amount of damage to roads, assets, and other infrastructure and even loss of lives. During the monsoon season (June–August), the disruption of routes due to landslide resulted in economic losses and barred villagers from accessing critical and essential facilities, thus impacting the livelihood of the communities residing along the road corridor. Hence immediate requirement was to systematically assess the landslide susceptibility for the study area that would support in the preparation of the planning and mitigation goal, both short and long term. The present study adopted the fuzzy analytic hierarchy process (fuzzy AHP) method integrated with geospatial technology that may be highly effective for landslide susceptibility assessment in the landslide-prone Lesser Himalayas. The use of validated landslide inventory data and high-resolution remote sensing images for selection and mapping of landslide conditioning factors gratifies the geospatial aspect of local variations across the Kalsi-Chakrata road corridor. For fuzzy AHP model setup, prominent landslide contributing factors viz., slope, aspect, altitude, lithology, proximity to road, fault & drainage, Stream Power Index (SPI), Topographical Wetness Index (TWI), rainfall, land use/land cover (LULC), soil, and seismicity, were mapped and classified into significant classes. The resultant landslide susceptibility map (LSM) shows that about 55% (45.23 km2) of the study area was categorized as a very high and high landslide susceptibility zone. Of this, about 21% (17.7 km2) was within very high LSM zone, while 33% (27.5 km2) fell under high landslide susceptibility categories. Approximately 17.6% (14.5 km2) areas fall within the moderately susceptible zone, where chances of future landslides may be amplified without periodic observation and prospective study. At the village level, it was observed that Jhutaya village, located nearer foothill of Lesser Himalayas, is most susceptible to landslide followed by Dhaira, Chapanu, and Sairi villages. The fuzzy AHP model shows 86.52% accuracy in landslide prediction evaluated through the ROC curve (at 95% confidence level). Hence, the output LSI may be referred by the planners and engineers for monitoring, prevention, and mitigation of landslide hazards and development of infrastructure in the Kalsi-Chakrata road corridor, and the fuzzy AHP methodology adopted may be applied in other areas of the Lesser Himalayas.http://dx.doi.org/10.1080/19475705.2020.1836038landslide susceptibility index (lsi)fuzzy analytic hierarchy process (fuzzy ahp)lesser himalayasroad corridorgis
collection DOAJ
language English
format Article
sources DOAJ
author Ujjwal Sur
Prafull Singh
Sansar Raj Meena
spellingShingle Ujjwal Sur
Prafull Singh
Sansar Raj Meena
Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation data
Geomatics, Natural Hazards & Risk
landslide susceptibility index (lsi)
fuzzy analytic hierarchy process (fuzzy ahp)
lesser himalayas
road corridor
gis
author_facet Ujjwal Sur
Prafull Singh
Sansar Raj Meena
author_sort Ujjwal Sur
title Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation data
title_short Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation data
title_full Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation data
title_fullStr Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation data
title_full_unstemmed Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation data
title_sort landslide susceptibility assessment in a lesser himalayan road corridor (india) applying fuzzy ahp technique and earth-observation data
publisher Taylor & Francis Group
series Geomatics, Natural Hazards & Risk
issn 1947-5705
1947-5713
publishDate 2020-01-01
description The Kalsi-Chakrata road corridor, located in the Lesser Himalayas, experiences several landslides every year, resulting in a considerable amount of damage to roads, assets, and other infrastructure and even loss of lives. During the monsoon season (June–August), the disruption of routes due to landslide resulted in economic losses and barred villagers from accessing critical and essential facilities, thus impacting the livelihood of the communities residing along the road corridor. Hence immediate requirement was to systematically assess the landslide susceptibility for the study area that would support in the preparation of the planning and mitigation goal, both short and long term. The present study adopted the fuzzy analytic hierarchy process (fuzzy AHP) method integrated with geospatial technology that may be highly effective for landslide susceptibility assessment in the landslide-prone Lesser Himalayas. The use of validated landslide inventory data and high-resolution remote sensing images for selection and mapping of landslide conditioning factors gratifies the geospatial aspect of local variations across the Kalsi-Chakrata road corridor. For fuzzy AHP model setup, prominent landslide contributing factors viz., slope, aspect, altitude, lithology, proximity to road, fault & drainage, Stream Power Index (SPI), Topographical Wetness Index (TWI), rainfall, land use/land cover (LULC), soil, and seismicity, were mapped and classified into significant classes. The resultant landslide susceptibility map (LSM) shows that about 55% (45.23 km2) of the study area was categorized as a very high and high landslide susceptibility zone. Of this, about 21% (17.7 km2) was within very high LSM zone, while 33% (27.5 km2) fell under high landslide susceptibility categories. Approximately 17.6% (14.5 km2) areas fall within the moderately susceptible zone, where chances of future landslides may be amplified without periodic observation and prospective study. At the village level, it was observed that Jhutaya village, located nearer foothill of Lesser Himalayas, is most susceptible to landslide followed by Dhaira, Chapanu, and Sairi villages. The fuzzy AHP model shows 86.52% accuracy in landslide prediction evaluated through the ROC curve (at 95% confidence level). Hence, the output LSI may be referred by the planners and engineers for monitoring, prevention, and mitigation of landslide hazards and development of infrastructure in the Kalsi-Chakrata road corridor, and the fuzzy AHP methodology adopted may be applied in other areas of the Lesser Himalayas.
topic landslide susceptibility index (lsi)
fuzzy analytic hierarchy process (fuzzy ahp)
lesser himalayas
road corridor
gis
url http://dx.doi.org/10.1080/19475705.2020.1836038
work_keys_str_mv AT ujjwalsur landslidesusceptibilityassessmentinalesserhimalayanroadcorridorindiaapplyingfuzzyahptechniqueandearthobservationdata
AT prafullsingh landslidesusceptibilityassessmentinalesserhimalayanroadcorridorindiaapplyingfuzzyahptechniqueandearthobservationdata
AT sansarrajmeena landslidesusceptibilityassessmentinalesserhimalayanroadcorridorindiaapplyingfuzzyahptechniqueandearthobservationdata
_version_ 1724349123369369600