A New Air Traffic Flow Management User-Driven Prioritisation Process for Low Volume Operator in Constraint: Simulations and Results

This document presents a new potential feature for the User Driven Prioritisation Process (UDPP) concept to give access and flexibility to Airspace Users (AUs) when they operate a low number of flights involved in a particular hotspot, a.k.a., Low Volume Users in Constraint (LVUC). Capacity constrai...

Full description

Bibliographic Details
Main Authors: Sergio Ruiz, Laurent Guichard, Nadine Pilon, Kris Delcourte
Format: Article
Language:English
Published: Hindawi-Wiley 2019-01-01
Series:Journal of Advanced Transportation
Online Access:http://dx.doi.org/10.1155/2019/1208279
Description
Summary:This document presents a new potential feature for the User Driven Prioritisation Process (UDPP) concept to give access and flexibility to Airspace Users (AUs) when they operate a low number of flights involved in a particular hotspot, a.k.a., Low Volume Users in Constraint (LVUC). Capacity constraints and congestion in the Air Traffic Management system impose delay to flights that cause large costs on airlines and passengers alike, with no significant capacity increases expected in the near-nor medium-term. Current UDPP features such as Enhanced Slot Swapping can increase flexibility for AUs to adapt their operations during capacity constrained situations. However, AUs are often impacted in their flight schedules by constraints that only affect a reduced number of flights, thus being in a situation of reduced flexibility—or no flexibility at all—to prioritise those flights. Some AUs are more vulnerable to this problem because they typically operate a low number of flights, e.g., business aviation. The new method proposed, named Flexible Credits for LVUC (FCL), is based on the use of “credits”, as a virtual currency, to increase the flexibility of LVUCs irrespective of the number of flights operated or affected by delay. FCL aims at facilitating the smooth coordination between AUs during the optimisation of their operations across multiple constraints and over the time. An initial set of simulations performed under credible conditions are presented to preliminarily analyse the feasibility and limitations of the method and to shed light on future research aspects. A first empirical evidence is given in this paper showing that increasing flexibility for LVUCs is possible without jeopardising equity.
ISSN:0197-6729
2042-3195