Periodic pulse control of Hopf bifurcation in a fractional-order delay predator–prey model incorporating a prey refuge

Abstract This paper is concerned with periodic pulse control of Hopf bifurcation for a fractional-order delay predator–prey model incorporating a prey refuge. The existence and uniqueness of a solution for such system is studied. Taking the time delay as the bifurcation parameter, critical values of...

Full description

Bibliographic Details
Main Authors: Xiuduo Liu, Hui Fang
Format: Article
Language:English
Published: SpringerOpen 2019-11-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-019-2413-9
Description
Summary:Abstract This paper is concerned with periodic pulse control of Hopf bifurcation for a fractional-order delay predator–prey model incorporating a prey refuge. The existence and uniqueness of a solution for such system is studied. Taking the time delay as the bifurcation parameter, critical values of the time delay for the emergence of Hopf bifurcation are determined. A novel periodic pulse delay feedback controller is introduced into the first equation of an uncontrolled system to successfully control the delay-deduced Hopf bifurcation of such a system. Since the stability theory is not well-developed for nonlinear fractional-order non-autonomous systems with delays, we investigate the periodic pulse control problem of the original system by a semi-analytical and semi-numerical method. Specifically, the stability of the linearized averaging system of the controlled system is first investigated, and then it is shown by numerical simulations that the controlled system has the same stability characteristics as its linearized averaging system. The proposed periodic pulse delay feedback controller has more flexibility than a classical linear delay feedback controller guaranteeing the control effect, due to the fact that the pulse width in each control period can be flexibly selected.
ISSN:1687-1847