The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - Liouville
Let us say that the principle of localization holds at the class of functions $F$ at point $x_0 \in [0, \pi]$ for the Lagrange\,--\,Sturm\,--\,Liouville interpolation process $L_n^{SL}(f,x)$ if $\lim_{n \rightarrow \infty}\left|L_n^{SL}(f, x_0)-L_n^{SL}(g,x_0)\right|=0$ follows from the fact that th...
Main Authors: | Aleksandr Yurievich Trynin, Ekaterina Dmitrievna Kireeva |
---|---|
Format: | Article |
Language: | English |
Published: |
Saratov State University
2020-03-01
|
Series: | Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |
Subjects: | |
Online Access: | https://mmi.sgu.ru/sites/mmi.sgu.ru/files/2020/02/51-63trynin-kireeva.pdf |
Similar Items
-
On the generalized eigenfunctions system of the Sturm–Liouville problem
by: Sigita Pečiulytė, et al.
Published: (2008-12-01) -
Convergence of eigenfunction expansions corresponding to nonlinear Sturm-Liouville operators
by: Alexander S. Makin, et al.
Published: (2004-06-01) -
An estimation of the eigenfunctions of periodic Sturm-Liouville problems
by: Seza Dinibutun
Published: (2021-01-01) -
Sturm-Liouville theory
by: Ting, Lycretia Englang
Published: (1996) -
On Two-Fold Expansion Formulas For A Singular Sturm-Liouville Operator
by: ALA Volkan, et al.
Published: (2019-12-01)