The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - Liouville

Let us say that the principle of localization holds at the class of functions $F$ at point $x_0 \in [0, \pi]$ for the Lagrange\,--\,Sturm\,--\,Liouville interpolation process $L_n^{SL}(f,x)$ if $\lim_{n \rightarrow \infty}\left|L_n^{SL}(f, x_0)-L_n^{SL}(g,x_0)\right|=0$ follows from the fact that th...

Full description

Bibliographic Details
Main Authors: Aleksandr Yurievich Trynin, Ekaterina Dmitrievna Kireeva
Format: Article
Language:English
Published: Saratov State University 2020-03-01
Series:Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
Subjects:
Online Access:https://mmi.sgu.ru/sites/mmi.sgu.ru/files/2020/02/51-63trynin-kireeva.pdf
id doaj-95745066ee90413fae15e4975b0225e5
record_format Article
spelling doaj-95745066ee90413fae15e4975b0225e52020-11-25T03:07:38ZengSaratov State UniversityИзвестия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика1816-97912541-90052020-03-012015163https://doi.org/10.18500/1816-9791-2020-20-1-51-63The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - LiouvilleAleksandr Yurievich Trynin0Ekaterina Dmitrievna Kireeva1Saratov State University, Russia, Saratov, Astrakhanskaya 83Saratov State University, Russia, Saratov, Astrakhanskaya 83Let us say that the principle of localization holds at the class of functions $F$ at point $x_0 \in [0, \pi]$ for the Lagrange\,--\,Sturm\,--\,Liouville interpolation process $L_n^{SL}(f,x)$ if $\lim_{n \rightarrow \infty}\left|L_n^{SL}(f, x_0)-L_n^{SL}(g,x_0)\right|=0$ follows from the fact that the condition $f(x)=g(x)$ is met for any two functions f and g belonging to F in some neighborhood $O_\delta(x_0)$, $\delta>0$. It is proved that the principle of localization at the class of Riemann integrable functions holds for interpolation processes built on the eigenfunctions of the regular Sturm\,--\,Liouville problem with a continuous potential of bounded variation. It is established that the principle of localization at the class of continuous on the segment $[0, \pi]$ functions holds for interpolation processes built on the eigenfunctions of the regular Sturm\,--\,Liouville problem with an optional continuous potential of bounded variation. We consider the case of boundary conditions of the third kind, from which the boundary conditions of the first kind are removed. Approximative properties of Lagrange\,--\,Sturm\,--\,Liouville operators at point $x_0\in [0, \pi] $ in both cases depend solely on the values of the approximate function just in the neighborhood of this point $x_0\in [0, \pi]$.https://mmi.sgu.ru/sites/mmi.sgu.ru/files/2020/02/51-63trynin-kireeva.pdfinterpolation processeigenfunctionsfunction approximationlocalization principle.
collection DOAJ
language English
format Article
sources DOAJ
author Aleksandr Yurievich Trynin
Ekaterina Dmitrievna Kireeva
spellingShingle Aleksandr Yurievich Trynin
Ekaterina Dmitrievna Kireeva
The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - Liouville
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
interpolation process
eigenfunctions
function approximation
localization principle.
author_facet Aleksandr Yurievich Trynin
Ekaterina Dmitrievna Kireeva
author_sort Aleksandr Yurievich Trynin
title The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - Liouville
title_short The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - Liouville
title_full The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - Liouville
title_fullStr The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - Liouville
title_full_unstemmed The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - Liouville
title_sort principle of localization at the class of functions integrable in the riemann for the processes of lagrange - sturm - liouville
publisher Saratov State University
series Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
issn 1816-9791
2541-9005
publishDate 2020-03-01
description Let us say that the principle of localization holds at the class of functions $F$ at point $x_0 \in [0, \pi]$ for the Lagrange\,--\,Sturm\,--\,Liouville interpolation process $L_n^{SL}(f,x)$ if $\lim_{n \rightarrow \infty}\left|L_n^{SL}(f, x_0)-L_n^{SL}(g,x_0)\right|=0$ follows from the fact that the condition $f(x)=g(x)$ is met for any two functions f and g belonging to F in some neighborhood $O_\delta(x_0)$, $\delta>0$. It is proved that the principle of localization at the class of Riemann integrable functions holds for interpolation processes built on the eigenfunctions of the regular Sturm\,--\,Liouville problem with a continuous potential of bounded variation. It is established that the principle of localization at the class of continuous on the segment $[0, \pi]$ functions holds for interpolation processes built on the eigenfunctions of the regular Sturm\,--\,Liouville problem with an optional continuous potential of bounded variation. We consider the case of boundary conditions of the third kind, from which the boundary conditions of the first kind are removed. Approximative properties of Lagrange\,--\,Sturm\,--\,Liouville operators at point $x_0\in [0, \pi] $ in both cases depend solely on the values of the approximate function just in the neighborhood of this point $x_0\in [0, \pi]$.
topic interpolation process
eigenfunctions
function approximation
localization principle.
url https://mmi.sgu.ru/sites/mmi.sgu.ru/files/2020/02/51-63trynin-kireeva.pdf
work_keys_str_mv AT aleksandryurievichtrynin theprincipleoflocalizationattheclassoffunctionsintegrableintheriemannfortheprocessesoflagrangesturmliouville
AT ekaterinadmitrievnakireeva theprincipleoflocalizationattheclassoffunctionsintegrableintheriemannfortheprocessesoflagrangesturmliouville
AT aleksandryurievichtrynin principleoflocalizationattheclassoffunctionsintegrableintheriemannfortheprocessesoflagrangesturmliouville
AT ekaterinadmitrievnakireeva principleoflocalizationattheclassoffunctionsintegrableintheriemannfortheprocessesoflagrangesturmliouville
_version_ 1724669292247515136