The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - Liouville
Let us say that the principle of localization holds at the class of functions $F$ at point $x_0 \in [0, \pi]$ for the Lagrange\,--\,Sturm\,--\,Liouville interpolation process $L_n^{SL}(f,x)$ if $\lim_{n \rightarrow \infty}\left|L_n^{SL}(f, x_0)-L_n^{SL}(g,x_0)\right|=0$ follows from the fact that th...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Saratov State University
2020-03-01
|
Series: | Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |
Subjects: | |
Online Access: | https://mmi.sgu.ru/sites/mmi.sgu.ru/files/2020/02/51-63trynin-kireeva.pdf |
id |
doaj-95745066ee90413fae15e4975b0225e5 |
---|---|
record_format |
Article |
spelling |
doaj-95745066ee90413fae15e4975b0225e52020-11-25T03:07:38ZengSaratov State UniversityИзвестия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика1816-97912541-90052020-03-012015163https://doi.org/10.18500/1816-9791-2020-20-1-51-63The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - LiouvilleAleksandr Yurievich Trynin0Ekaterina Dmitrievna Kireeva1Saratov State University, Russia, Saratov, Astrakhanskaya 83Saratov State University, Russia, Saratov, Astrakhanskaya 83Let us say that the principle of localization holds at the class of functions $F$ at point $x_0 \in [0, \pi]$ for the Lagrange\,--\,Sturm\,--\,Liouville interpolation process $L_n^{SL}(f,x)$ if $\lim_{n \rightarrow \infty}\left|L_n^{SL}(f, x_0)-L_n^{SL}(g,x_0)\right|=0$ follows from the fact that the condition $f(x)=g(x)$ is met for any two functions f and g belonging to F in some neighborhood $O_\delta(x_0)$, $\delta>0$. It is proved that the principle of localization at the class of Riemann integrable functions holds for interpolation processes built on the eigenfunctions of the regular Sturm\,--\,Liouville problem with a continuous potential of bounded variation. It is established that the principle of localization at the class of continuous on the segment $[0, \pi]$ functions holds for interpolation processes built on the eigenfunctions of the regular Sturm\,--\,Liouville problem with an optional continuous potential of bounded variation. We consider the case of boundary conditions of the third kind, from which the boundary conditions of the first kind are removed. Approximative properties of Lagrange\,--\,Sturm\,--\,Liouville operators at point $x_0\in [0, \pi] $ in both cases depend solely on the values of the approximate function just in the neighborhood of this point $x_0\in [0, \pi]$.https://mmi.sgu.ru/sites/mmi.sgu.ru/files/2020/02/51-63trynin-kireeva.pdfinterpolation processeigenfunctionsfunction approximationlocalization principle. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Aleksandr Yurievich Trynin Ekaterina Dmitrievna Kireeva |
spellingShingle |
Aleksandr Yurievich Trynin Ekaterina Dmitrievna Kireeva The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - Liouville Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика interpolation process eigenfunctions function approximation localization principle. |
author_facet |
Aleksandr Yurievich Trynin Ekaterina Dmitrievna Kireeva |
author_sort |
Aleksandr Yurievich Trynin |
title |
The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - Liouville |
title_short |
The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - Liouville |
title_full |
The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - Liouville |
title_fullStr |
The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - Liouville |
title_full_unstemmed |
The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange - Sturm - Liouville |
title_sort |
principle of localization at the class of functions integrable in the riemann for the processes of lagrange - sturm - liouville |
publisher |
Saratov State University |
series |
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |
issn |
1816-9791 2541-9005 |
publishDate |
2020-03-01 |
description |
Let us say that the principle of localization holds at the class of functions $F$ at point $x_0 \in [0, \pi]$ for the Lagrange\,--\,Sturm\,--\,Liouville interpolation process $L_n^{SL}(f,x)$ if $\lim_{n \rightarrow \infty}\left|L_n^{SL}(f, x_0)-L_n^{SL}(g,x_0)\right|=0$ follows from the fact that the condition $f(x)=g(x)$ is met for any two functions f and g belonging to F in some neighborhood $O_\delta(x_0)$, $\delta>0$. It is proved that the principle of localization at the class of Riemann integrable functions holds for interpolation processes built on the eigenfunctions of the regular Sturm\,--\,Liouville problem with a continuous potential of bounded variation. It is established that the principle of localization at the class of continuous on the segment $[0, \pi]$ functions holds for interpolation processes built on the eigenfunctions of the regular Sturm\,--\,Liouville problem with an optional continuous potential of bounded variation. We consider the case of boundary conditions of the third kind, from which the boundary conditions of the first kind are removed. Approximative properties of Lagrange\,--\,Sturm\,--\,Liouville operators at point $x_0\in [0, \pi] $ in both cases depend solely on the values of the approximate function just in the neighborhood of this point $x_0\in [0, \pi]$. |
topic |
interpolation process eigenfunctions function approximation localization principle. |
url |
https://mmi.sgu.ru/sites/mmi.sgu.ru/files/2020/02/51-63trynin-kireeva.pdf |
work_keys_str_mv |
AT aleksandryurievichtrynin theprincipleoflocalizationattheclassoffunctionsintegrableintheriemannfortheprocessesoflagrangesturmliouville AT ekaterinadmitrievnakireeva theprincipleoflocalizationattheclassoffunctionsintegrableintheriemannfortheprocessesoflagrangesturmliouville AT aleksandryurievichtrynin principleoflocalizationattheclassoffunctionsintegrableintheriemannfortheprocessesoflagrangesturmliouville AT ekaterinadmitrievnakireeva principleoflocalizationattheclassoffunctionsintegrableintheriemannfortheprocessesoflagrangesturmliouville |
_version_ |
1724669292247515136 |