Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection.
The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on d...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2020-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0242899 |
id |
doaj-9549107975a0472aaf022b44352060ba |
---|---|
record_format |
Article |
spelling |
doaj-9549107975a0472aaf022b44352060ba2021-03-04T12:42:36ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-011512e024289910.1371/journal.pone.0242899Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection.Musatafa Abbas Abbood AlbadrSabrina TiunMasri AyobFahad Taha Al-DhiefKhairuddin OmarFaizal Amri HamzahThe coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images.https://doi.org/10.1371/journal.pone.0242899 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Musatafa Abbas Abbood Albadr Sabrina Tiun Masri Ayob Fahad Taha Al-Dhief Khairuddin Omar Faizal Amri Hamzah |
spellingShingle |
Musatafa Abbas Abbood Albadr Sabrina Tiun Masri Ayob Fahad Taha Al-Dhief Khairuddin Omar Faizal Amri Hamzah Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection. PLoS ONE |
author_facet |
Musatafa Abbas Abbood Albadr Sabrina Tiun Masri Ayob Fahad Taha Al-Dhief Khairuddin Omar Faizal Amri Hamzah |
author_sort |
Musatafa Abbas Abbood Albadr |
title |
Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection. |
title_short |
Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection. |
title_full |
Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection. |
title_fullStr |
Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection. |
title_full_unstemmed |
Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection. |
title_sort |
optimised genetic algorithm-extreme learning machine approach for automatic covid-19 detection. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2020-01-01 |
description |
The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images. |
url |
https://doi.org/10.1371/journal.pone.0242899 |
work_keys_str_mv |
AT musatafaabbasabboodalbadr optimisedgeneticalgorithmextremelearningmachineapproachforautomaticcovid19detection AT sabrinatiun optimisedgeneticalgorithmextremelearningmachineapproachforautomaticcovid19detection AT masriayob optimisedgeneticalgorithmextremelearningmachineapproachforautomaticcovid19detection AT fahadtahaaldhief optimisedgeneticalgorithmextremelearningmachineapproachforautomaticcovid19detection AT khairuddinomar optimisedgeneticalgorithmextremelearningmachineapproachforautomaticcovid19detection AT faizalamrihamzah optimisedgeneticalgorithmextremelearningmachineapproachforautomaticcovid19detection |
_version_ |
1714801922157838336 |