Statistical Inference under Censored Data for the New Exponential-X Fréchet Distribution: Simulation and Application to Leukemia Data
In reliability studies, the best fitting of lifetime models leads to accurate estimates and predictions, especially when these models have nonmonotone hazard functions. For this purpose, the new Exponential-X Fréchet (NEXF) distribution that belongs to the new exponential-X (NEX) family of distribut...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Computational Intelligence and Neuroscience |
Online Access: | http://dx.doi.org/10.1155/2021/2167670 |
id |
doaj-9536d6cf98fa495fa823b902af133d22 |
---|---|
record_format |
Article |
spelling |
doaj-9536d6cf98fa495fa823b902af133d222021-09-06T00:00:40ZengHindawi LimitedComputational Intelligence and Neuroscience1687-52732021-01-01202110.1155/2021/2167670Statistical Inference under Censored Data for the New Exponential-X Fréchet Distribution: Simulation and Application to Leukemia DataOmar Alzeley0Ehab M. Almetwally1Ahmed M. Gemeay2Huda M. Alshanbari3E. H. Hafez4M. H. Abu-Moussa5Department of MathematicsDepartment of StatisticsDepartment of MathematicsDepartment of Mathematical SciencesDepartment of MathematicsDepartment of MathematicsIn reliability studies, the best fitting of lifetime models leads to accurate estimates and predictions, especially when these models have nonmonotone hazard functions. For this purpose, the new Exponential-X Fréchet (NEXF) distribution that belongs to the new exponential-X (NEX) family of distributions is proposed to be a superior fitting model for some reliability models with nonmonotone hazard functions and beat the competitive distribution such as the exponential distribution and Frechet distribution with two and three parameters. So, we concentrated our effort to introduce a new novel model. Throughout this research, we have studied the properties of its statistical measures of the NEXF distribution. The process of parameter estimation has been studied under a complete sample and Type-I censoring scheme. The numerical simulation is detailed to asses the proposed techniques of estimation. Finally, a Type-I censoring real-life application on leukaemia patient’s survival with a new treatment has been studied to illustrate the estimation methods, which are well fitted by the NEXF distribution among all its competitors. We used for the fitting test the novel modified Kolmogorov–Smirnov (KS) algorithm for fitting Type-I censored data.http://dx.doi.org/10.1155/2021/2167670 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Omar Alzeley Ehab M. Almetwally Ahmed M. Gemeay Huda M. Alshanbari E. H. Hafez M. H. Abu-Moussa |
spellingShingle |
Omar Alzeley Ehab M. Almetwally Ahmed M. Gemeay Huda M. Alshanbari E. H. Hafez M. H. Abu-Moussa Statistical Inference under Censored Data for the New Exponential-X Fréchet Distribution: Simulation and Application to Leukemia Data Computational Intelligence and Neuroscience |
author_facet |
Omar Alzeley Ehab M. Almetwally Ahmed M. Gemeay Huda M. Alshanbari E. H. Hafez M. H. Abu-Moussa |
author_sort |
Omar Alzeley |
title |
Statistical Inference under Censored Data for the New Exponential-X Fréchet Distribution: Simulation and Application to Leukemia Data |
title_short |
Statistical Inference under Censored Data for the New Exponential-X Fréchet Distribution: Simulation and Application to Leukemia Data |
title_full |
Statistical Inference under Censored Data for the New Exponential-X Fréchet Distribution: Simulation and Application to Leukemia Data |
title_fullStr |
Statistical Inference under Censored Data for the New Exponential-X Fréchet Distribution: Simulation and Application to Leukemia Data |
title_full_unstemmed |
Statistical Inference under Censored Data for the New Exponential-X Fréchet Distribution: Simulation and Application to Leukemia Data |
title_sort |
statistical inference under censored data for the new exponential-x fréchet distribution: simulation and application to leukemia data |
publisher |
Hindawi Limited |
series |
Computational Intelligence and Neuroscience |
issn |
1687-5273 |
publishDate |
2021-01-01 |
description |
In reliability studies, the best fitting of lifetime models leads to accurate estimates and predictions, especially when these models have nonmonotone hazard functions. For this purpose, the new Exponential-X Fréchet (NEXF) distribution that belongs to the new exponential-X (NEX) family of distributions is proposed to be a superior fitting model for some reliability models with nonmonotone hazard functions and beat the competitive distribution such as the exponential distribution and Frechet distribution with two and three parameters. So, we concentrated our effort to introduce a new novel model. Throughout this research, we have studied the properties of its statistical measures of the NEXF distribution. The process of parameter estimation has been studied under a complete sample and Type-I censoring scheme. The numerical simulation is detailed to asses the proposed techniques of estimation. Finally, a Type-I censoring real-life application on leukaemia patient’s survival with a new treatment has been studied to illustrate the estimation methods, which are well fitted by the NEXF distribution among all its competitors. We used for the fitting test the novel modified Kolmogorov–Smirnov (KS) algorithm for fitting Type-I censored data. |
url |
http://dx.doi.org/10.1155/2021/2167670 |
work_keys_str_mv |
AT omaralzeley statisticalinferenceundercensoreddataforthenewexponentialxfrechetdistributionsimulationandapplicationtoleukemiadata AT ehabmalmetwally statisticalinferenceundercensoreddataforthenewexponentialxfrechetdistributionsimulationandapplicationtoleukemiadata AT ahmedmgemeay statisticalinferenceundercensoreddataforthenewexponentialxfrechetdistributionsimulationandapplicationtoleukemiadata AT hudamalshanbari statisticalinferenceundercensoreddataforthenewexponentialxfrechetdistributionsimulationandapplicationtoleukemiadata AT ehhafez statisticalinferenceundercensoreddataforthenewexponentialxfrechetdistributionsimulationandapplicationtoleukemiadata AT mhabumoussa statisticalinferenceundercensoreddataforthenewexponentialxfrechetdistributionsimulationandapplicationtoleukemiadata |
_version_ |
1717780284717400064 |