SELECTION OF THERMO-MECHANIC MODE OF PELLET MOLDING FROM TiO2 POWDER FOR MAGNETRON APPLICATION OF COMPOSITE COATINGS ON PARTS
It is advisable to make film coatings based on titanium dioxide for the details of instrumentation industry to reduce their resistance from compositions with other oxides. It is desirable to prepare the compounds during coating stage by magnetron method. Comparison of the designs of magnetron instal...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Saint-Petersburg Mining University
2018-08-01
|
Series: | Zapiski Gornogo Instituta |
Subjects: | |
Online Access: | http://pmi.spmi.ru/index.php/pmi/article/view/7145 |
Summary: | It is advisable to make film coatings based on titanium dioxide for the details of instrumentation industry to reduce their resistance from compositions with other oxides. It is desirable to prepare the compounds during coating stage by magnetron method. Comparison of the designs of magnetron installations substantiates the rationality of using an installation with a single magnetron, equipped with a pellet from a composition of powders based on titanium. The coating technology using a single magnetron equipped with a composite pellet is described using an example of the application of wear-resistant self-lubricating coatings from a Ti + WS2 composition. To equip the magnetron with a TiO2 powder pellet, the task was to ensure the greatest uniformity of the density distribution in the pellet volume, and to achieve the greatest value of this density. As a result of the study of the technology of hot molding of TiO2 powder described in the article, the efficiency of combining the heating of a powder with its compaction in one operation is shown. During this operation, the dependence of the density of the produced pellet on the molding temperature, pressure, holding time under pressure and grain size was experimentally investigated. The chosen thermomechanical mode of TiO2 pellet molding is substantiated. By using the following mode (in the studied range) of molding it is possible to produce the pellet with the highest density: temperature 1300 °С, pressure 40 MPa, holding time under pressure 20 min, and grain size 2.2 μm. |
---|---|
ISSN: | 2411-3336 2541-9404 |