Effectiveness of a Snowboarding Simulation Using the Distinct Element Method

Some snowboarding simulation methods have been developed. Although snow has unique properties such as granular material and continuum, few snowboard simulation methods can reproduce the discrete behavior of snow. Conventional simulations are unsuitable for reproducing the characteristics of snow whe...

Full description

Bibliographic Details
Main Authors: Tatsuya Yoshida, Shogo Nakamura, Fumiyasu Kuratani
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Proceedings
Subjects:
Online Access:https://www.mdpi.com/2504-3900/49/1/101
Description
Summary:Some snowboarding simulation methods have been developed. Although snow has unique properties such as granular material and continuum, few snowboard simulation methods can reproduce the discrete behavior of snow. Conventional simulations are unsuitable for reproducing the characteristics of snow when ski and snowboard turns carve through snow and create grooves in it with their edges. We developed a snowboarding simulation based on the distinct element method (DEM) to reproduce the characteristics of snow and compare the results of the developed method with those of a conventional simulation method. The developed simulation was validated by comparing with the results of an experiment involving a few miniature snowboards of different shapes and a pseudo-snow slope. The turn trajectory and board posture predicted by the DEM simulation were closer to the test results than those predicted by the conventional simulation.
ISSN:2504-3900