Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One

This paper is devoted to two different but related tags: firstly, the side of the bifurcation from infinity at every eigenvalue of the problem −u″(t)=λu(t)+g(t,u(t)), u∈H01(0,π), secondly, the solutions of the associated resonant problem at any eigenvalue. From the global shape of the nonlinearity g...

Full description

Bibliographic Details
Main Authors: José L. Gámez, Juan F. Ruiz-Hidalgo
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2012/284696
id doaj-951f5bd9c6c342189ce9ec857051a2e6
record_format Article
spelling doaj-951f5bd9c6c342189ce9ec857051a2e62020-11-24T23:24:36ZengHindawi LimitedJournal of Function Spaces and Applications0972-68021758-49652012-01-01201210.1155/2012/284696284696Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension OneJosé L. Gámez0Juan F. Ruiz-Hidalgo1Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, SpainDepartamento de Didáctica de la Matemática, Facultad de Ciencias de la Educación, Campus de Cartuja, Universidad de Granada, 18071 Granada, SpainThis paper is devoted to two different but related tags: firstly, the side of the bifurcation from infinity at every eigenvalue of the problem −u″(t)=λu(t)+g(t,u(t)), u∈H01(0,π), secondly, the solutions of the associated resonant problem at any eigenvalue. From the global shape of the nonlinearity g we obtain computable integral values which will decide the behavior of the bifurcations and, consequently, the possibility of finding solutions of the resonant problems.http://dx.doi.org/10.1155/2012/284696
collection DOAJ
language English
format Article
sources DOAJ
author José L. Gámez
Juan F. Ruiz-Hidalgo
spellingShingle José L. Gámez
Juan F. Ruiz-Hidalgo
Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One
Journal of Function Spaces and Applications
author_facet José L. Gámez
Juan F. Ruiz-Hidalgo
author_sort José L. Gámez
title Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One
title_short Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One
title_full Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One
title_fullStr Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One
title_full_unstemmed Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One
title_sort bifurcation from infinity and resonance results at high eigenvalues in dimension one
publisher Hindawi Limited
series Journal of Function Spaces and Applications
issn 0972-6802
1758-4965
publishDate 2012-01-01
description This paper is devoted to two different but related tags: firstly, the side of the bifurcation from infinity at every eigenvalue of the problem −u″(t)=λu(t)+g(t,u(t)), u∈H01(0,π), secondly, the solutions of the associated resonant problem at any eigenvalue. From the global shape of the nonlinearity g we obtain computable integral values which will decide the behavior of the bifurcations and, consequently, the possibility of finding solutions of the resonant problems.
url http://dx.doi.org/10.1155/2012/284696
work_keys_str_mv AT joselgamez bifurcationfrominfinityandresonanceresultsathigheigenvaluesindimensionone
AT juanfruizhidalgo bifurcationfrominfinityandresonanceresultsathigheigenvaluesindimensionone
_version_ 1725559777412513792