Summary: | The nitrogen-doped form of GUITAR (pseudo-Graphite from the University of Idaho Thermalized Asphalt Reaction) was examined by X-ray photoelectron, Raman, and X-ray diffraction spectroscopies and cyclic voltammetry (CV). Electrochemical studies indicate that N-GUITAR exhibits significant resistance to fouling by adsorption and by passivation. Unlike other carbon materials, it maintains fast heterogenous electron transfer (HET) kinetics with Fe(CN)<sub>6</sub><sup>3−/4−</sup> with exposure to air. The CV peak potential separation (ΔEp) of 66 mV increased to 69 mV in 3 h vs. 67 to 221 mV for a highly oriented pyrolytic graphite (HOPG) electrode. Water contact angle measurements indicate that N-GUITAR was able to better maintain a hydrophilic state during the 3-h exposure, going from 55.8 to 70.4° while HOPG increased from 63.8 to 80.1°. This indicates that N-GUITAR better resisted adsorption of volatile organic compounds. CV studies of dopamine also indicate N-GUITAR is resistant to passivation. The ΔEp for the dopamine/o-dopaminoquinone couple is 83 mV indicating fast HET rates. This is reflected in the peak current ratios for the oxidation and reduction processes of 1.3 indicating that o-dopaminoquinone is not lost to passivation processes. This ratio along with the minimal signal attenuation is the best reported in literature.
|