Entropy of <inline-formula><graphic file="1029-242X-2001-852528-i1.gif"/></inline-formula>-valued operators and diverse applications

<p/> <p>We investigate how the metric entropy of <inline-formula><graphic file="1029-242X-2001-852528-i2.gif"/></inline-formula>-valued operators influences the entropy behaviour of special operators, such as integral or matrix operators. Various applications...

Full description

Bibliographic Details
Main Authors: Edmunds David E, Carl Bernd
Format: Article
Language:English
Published: SpringerOpen 2001-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/6/852528
id doaj-9508905d77514d4caf13169d639d1543
record_format Article
spelling doaj-9508905d77514d4caf13169d639d15432020-11-25T02:27:30ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2001-01-0120012852528Entropy of <inline-formula><graphic file="1029-242X-2001-852528-i1.gif"/></inline-formula>-valued operators and diverse applicationsEdmunds David ECarl Bernd<p/> <p>We investigate how the metric entropy of <inline-formula><graphic file="1029-242X-2001-852528-i2.gif"/></inline-formula>-valued operators influences the entropy behaviour of special operators, such as integral or matrix operators. Various applications are given, to the eigenvalue distributions of operators and to the metric entropy of convex hulls of precompact sets in Banach spaces, for example. In particular, we provide metric entropy conditions on operators sufficient to ensure that the operators are in certain Schatten classes.</p>http://www.journalofinequalitiesandapplications.com/content/6/852528EntropyIntegral operatorsSchatten classes
collection DOAJ
language English
format Article
sources DOAJ
author Edmunds David E
Carl Bernd
spellingShingle Edmunds David E
Carl Bernd
Entropy of <inline-formula><graphic file="1029-242X-2001-852528-i1.gif"/></inline-formula>-valued operators and diverse applications
Journal of Inequalities and Applications
Entropy
Integral operators
Schatten classes
author_facet Edmunds David E
Carl Bernd
author_sort Edmunds David E
title Entropy of <inline-formula><graphic file="1029-242X-2001-852528-i1.gif"/></inline-formula>-valued operators and diverse applications
title_short Entropy of <inline-formula><graphic file="1029-242X-2001-852528-i1.gif"/></inline-formula>-valued operators and diverse applications
title_full Entropy of <inline-formula><graphic file="1029-242X-2001-852528-i1.gif"/></inline-formula>-valued operators and diverse applications
title_fullStr Entropy of <inline-formula><graphic file="1029-242X-2001-852528-i1.gif"/></inline-formula>-valued operators and diverse applications
title_full_unstemmed Entropy of <inline-formula><graphic file="1029-242X-2001-852528-i1.gif"/></inline-formula>-valued operators and diverse applications
title_sort entropy of <inline-formula><graphic file="1029-242x-2001-852528-i1.gif"/></inline-formula>-valued operators and diverse applications
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 2001-01-01
description <p/> <p>We investigate how the metric entropy of <inline-formula><graphic file="1029-242X-2001-852528-i2.gif"/></inline-formula>-valued operators influences the entropy behaviour of special operators, such as integral or matrix operators. Various applications are given, to the eigenvalue distributions of operators and to the metric entropy of convex hulls of precompact sets in Banach spaces, for example. In particular, we provide metric entropy conditions on operators sufficient to ensure that the operators are in certain Schatten classes.</p>
topic Entropy
Integral operators
Schatten classes
url http://www.journalofinequalitiesandapplications.com/content/6/852528
work_keys_str_mv AT edmundsdavide entropyofinlineformulagraphicfile1029242x2001852528i1gifinlineformulavaluedoperatorsanddiverseapplications
AT carlbernd entropyofinlineformulagraphicfile1029242x2001852528i1gifinlineformulavaluedoperatorsanddiverseapplications
_version_ 1724842719215353856