Automated Flare Prediction Using Extreme Learning Machine
Extreme learning machine (ELM) is a fast learning algorithm of single-hidden layer feedforward neural networks (SLFNs). Compared with the traditional neural networks, the ELM algorithm has the advantages of fast learning speed and good generalization. At the same time, an ordinal logistic regression...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2013/917139 |
id |
doaj-94f6e1a73b244360808b4868e6462bf0 |
---|---|
record_format |
Article |
spelling |
doaj-94f6e1a73b244360808b4868e6462bf02020-11-25T00:58:59ZengHindawi LimitedMathematical Problems in Engineering1024-123X1563-51472013-01-01201310.1155/2013/917139917139Automated Flare Prediction Using Extreme Learning MachineYuqing Bian0Jianwei Yang1Ming Li2Rushi Lan3School of Math & Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, ChinaSchool of Math & Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, ChinaSchool of Information Science & Technology, East China Normal University, No. 500, Dongchuan Road, Shanghai 200241, ChinaDepartment of Computer and Information Science, University of Macau, Avenue Padre Tomas Pereira, Taipa 1356, MacauExtreme learning machine (ELM) is a fast learning algorithm of single-hidden layer feedforward neural networks (SLFNs). Compared with the traditional neural networks, the ELM algorithm has the advantages of fast learning speed and good generalization. At the same time, an ordinal logistic regression (LR) is a statistical method which is conceptually simple and algorithmically fast. In this paper, in order to improve the real-time performance, a flare forecasting method is introduced which is the combination of the LR model and the ELM algorithm. The predictive variables are three photospheric magnetic parameters, that is, the total unsigned magnetic flux, length of the strong-gradient magnetic polarity inversion line, and total magnetic energy dissipation. The LR model is used to map these three magnetic parameters of each active region into four probabilities. Consequently, the ELM is used to map the four probabilities into a binary label which is the final output. The proposed model is used to predict the occurrence of flares with a certain level over 24 hours following the time when the magnetogram is recorded. The experimental results show that the cascade algorithm not only improves learning speed to realize timely prediction but also has higher accuracy of X-class flare prediction in comparison with other methods.http://dx.doi.org/10.1155/2013/917139 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yuqing Bian Jianwei Yang Ming Li Rushi Lan |
spellingShingle |
Yuqing Bian Jianwei Yang Ming Li Rushi Lan Automated Flare Prediction Using Extreme Learning Machine Mathematical Problems in Engineering |
author_facet |
Yuqing Bian Jianwei Yang Ming Li Rushi Lan |
author_sort |
Yuqing Bian |
title |
Automated Flare Prediction Using Extreme Learning Machine |
title_short |
Automated Flare Prediction Using Extreme Learning Machine |
title_full |
Automated Flare Prediction Using Extreme Learning Machine |
title_fullStr |
Automated Flare Prediction Using Extreme Learning Machine |
title_full_unstemmed |
Automated Flare Prediction Using Extreme Learning Machine |
title_sort |
automated flare prediction using extreme learning machine |
publisher |
Hindawi Limited |
series |
Mathematical Problems in Engineering |
issn |
1024-123X 1563-5147 |
publishDate |
2013-01-01 |
description |
Extreme learning machine (ELM) is a fast learning algorithm of single-hidden layer feedforward neural networks (SLFNs). Compared with the traditional neural networks, the ELM algorithm has the advantages of fast learning speed and good generalization. At the same time, an ordinal logistic regression (LR) is a statistical method which is conceptually simple and algorithmically fast. In this paper, in order to improve the real-time performance, a flare forecasting method is introduced which is the combination of the LR model and the ELM algorithm. The predictive variables are three photospheric magnetic parameters, that is, the total unsigned magnetic flux, length of the strong-gradient magnetic polarity inversion line, and total magnetic energy dissipation. The LR model is used to map these three magnetic parameters of each active region into four probabilities. Consequently, the ELM is used to map the four probabilities into a binary label which is the final output. The proposed model is used to predict the occurrence of flares with a certain level over 24 hours following the time when the magnetogram is recorded. The experimental results show that the cascade algorithm not only improves learning speed to realize timely prediction but also has higher accuracy of X-class flare prediction in comparison with other methods. |
url |
http://dx.doi.org/10.1155/2013/917139 |
work_keys_str_mv |
AT yuqingbian automatedflarepredictionusingextremelearningmachine AT jianweiyang automatedflarepredictionusingextremelearningmachine AT mingli automatedflarepredictionusingextremelearningmachine AT rushilan automatedflarepredictionusingextremelearningmachine |
_version_ |
1725219487455641600 |