Analysis power shortage minimization methods in the modern processing software for adequacy assessment of electric power systems

Analysis of domestic and foreign software systems for assessing the resource adequacy showed a variety of models and methods used in them. Many software systems use both linear and nonlinear models, these models are optimized according to various criteria to simulate the operation of the system. As...

Full description

Bibliographic Details
Main Authors: Iakubovskii Dmitrii, Krupenev Dmitry
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/69/e3sconf_energy-212020_06008.pdf
Description
Summary:Analysis of domestic and foreign software systems for assessing the resource adequacy showed a variety of models and methods used in them. Many software systems use both linear and nonlinear models, these models are optimized according to various criteria to simulate the operation of the system. As tools for solving, software usually use commercial high-level modelling systems for mathematical optimization. However, in addition to the existing ready-made commercial solutions, the authors consider the effectiveness of optimization methods, as well as their parallelized versions, which can be independently implemented and applied as a solver for a specific problem. As a result, it was confirmed that these methods can be used to solve the problem, but they are less effective relative to a commercial solver. From the point of view of accuracy and resources spent on calculations, the most effective of the independently implemented methods turned out to be the parallelized method of differential evolution, which was confirmed by numerical experiments on small systems.
ISSN:2267-1242