Universally Balanced Combinatorial Optimization Games
This article surveys studies on universally balanced properties of cooperative games defined in a succinct form. In particular, we focus on combinatorial optimization games in which the values to coalitions are defined through linear optimization programs, possibly combinatorial, that is subject to...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2010-09-01
|
Series: | Games |
Subjects: | |
Online Access: | http://www.mdpi.com/2073-4336/1/3/299/ |
id |
doaj-94babdc9461041bc99b3b6679842d64a |
---|---|
record_format |
Article |
spelling |
doaj-94babdc9461041bc99b3b6679842d64a2020-11-24T22:35:39ZengMDPI AGGames2073-43362010-09-011329931610.3390/g1030299Universally Balanced Combinatorial Optimization GamesXiaotie DengGabrielle DemangeThis article surveys studies on universally balanced properties of cooperative games defined in a succinct form. In particular, we focus on combinatorial optimization games in which the values to coalitions are defined through linear optimization programs, possibly combinatorial, that is subject to integer constraints. In economic settings, the integer requirement reflects some forms of indivisibility. We are interested in the classes of games that guarantee a non-empty core no matter what are the admissible values assigned to the parameters defining these programs. We call such classes universally balanced. We present characterization and complexity results on the universally balancedness property for some classes of interesting combinatorial optimization games. In particular, we focus on the algorithmic properties for identifying universally balancedness for the games under discussion. http://www.mdpi.com/2073-4336/1/3/299/combinatorial cooperative gamesbalancedblockingcoreintegrality |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xiaotie Deng Gabrielle Demange |
spellingShingle |
Xiaotie Deng Gabrielle Demange Universally Balanced Combinatorial Optimization Games Games combinatorial cooperative games balanced blocking core integrality |
author_facet |
Xiaotie Deng Gabrielle Demange |
author_sort |
Xiaotie Deng |
title |
Universally Balanced Combinatorial Optimization Games |
title_short |
Universally Balanced Combinatorial Optimization Games |
title_full |
Universally Balanced Combinatorial Optimization Games |
title_fullStr |
Universally Balanced Combinatorial Optimization Games |
title_full_unstemmed |
Universally Balanced Combinatorial Optimization Games |
title_sort |
universally balanced combinatorial optimization games |
publisher |
MDPI AG |
series |
Games |
issn |
2073-4336 |
publishDate |
2010-09-01 |
description |
This article surveys studies on universally balanced properties of cooperative games defined in a succinct form. In particular, we focus on combinatorial optimization games in which the values to coalitions are defined through linear optimization programs, possibly combinatorial, that is subject to integer constraints. In economic settings, the integer requirement reflects some forms of indivisibility. We are interested in the classes of games that guarantee a non-empty core no matter what are the admissible values assigned to the parameters defining these programs. We call such classes universally balanced. We present characterization and complexity results on the universally balancedness property for some classes of interesting combinatorial optimization games. In particular, we focus on the algorithmic properties for identifying universally balancedness for the games under discussion. |
topic |
combinatorial cooperative games balanced blocking core integrality |
url |
http://www.mdpi.com/2073-4336/1/3/299/ |
work_keys_str_mv |
AT xiaotiedeng universallybalancedcombinatorialoptimizationgames AT gabrielledemange universallybalancedcombinatorialoptimizationgames |
_version_ |
1725723488419840000 |