Numerical investigation of a capsule-shaped particle settling in a vertical channel
The previously developed lattice Boltzmann - direct forcing/fictitious domain method is improved by introducing a multiple-relaxation-time model, and a detailed investigation of sedimentation of a capsule-shaped particle settling in a channel is carried out. The effects of blockage ratio on the...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
VINCA Institute of Nuclear Sciences
2012-01-01
|
Series: | Thermal Science |
Subjects: | |
Online Access: | http://www.doiserbia.nb.rs/img/doi/0354-9836/2012/0354-98361205419N.pdf |
Summary: | The previously developed lattice Boltzmann - direct forcing/fictitious domain method is improved by introducing a multiple-relaxation-time model, and a detailed investigation of sedimentation of a capsule-shaped particle settling in a channel is carried out. The effects of blockage ratio on the sedimentation pattern at low Reynolds numbers are studied. It concludes that for a narrow channel, besides vertical and horizontal pattern, there exists another sedimentation pattern named inclined pattern. Through a large amount of simulations, two critical lines are obtained, which divide the three patterns based on the critical values of density ratio. |
---|---|
ISSN: | 0354-9836 |