Numerical investigation of a capsule-shaped particle settling in a vertical channel

The previously developed lattice Boltzmann - direct forcing/fictitious domain method is improved by introducing a multiple-relaxation-time model, and a detailed investigation of sedimentation of a capsule-shaped particle settling in a channel is carried out. The effects of blockage ratio on the...

Full description

Bibliographic Details
Main Author: Nie De-Ming
Format: Article
Language:English
Published: VINCA Institute of Nuclear Sciences 2012-01-01
Series:Thermal Science
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/0354-9836/2012/0354-98361205419N.pdf
Description
Summary:The previously developed lattice Boltzmann - direct forcing/fictitious domain method is improved by introducing a multiple-relaxation-time model, and a detailed investigation of sedimentation of a capsule-shaped particle settling in a channel is carried out. The effects of blockage ratio on the sedimentation pattern at low Reynolds numbers are studied. It concludes that for a narrow channel, besides vertical and horizontal pattern, there exists another sedimentation pattern named inclined pattern. Through a large amount of simulations, two critical lines are obtained, which divide the three patterns based on the critical values of density ratio.
ISSN:0354-9836