Matlab/R workflows to assess critical choices in Global Sensitivity Analysis using the SAFE toolbox
Global Sensitivity Analysis (GSA) is a set of statistical techniques to investigate the effects of the uncertainty in the input factors of a mathematical model on the model’s outputs. The value of GSA for the construction, evaluation, and improvement of earth system models is reviewed in a companion...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-01-01
|
Series: | MethodsX |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2215016119302572 |
id |
doaj-94b65cb3fe1d4a74b33ae7644b30acf3 |
---|---|
record_format |
Article |
spelling |
doaj-94b65cb3fe1d4a74b33ae7644b30acf32020-11-25T01:15:24ZengElsevierMethodsX2215-01612019-01-01622582280Matlab/R workflows to assess critical choices in Global Sensitivity Analysis using the SAFE toolboxValentina Noacco0Fanny Sarrazin1Francesca Pianosi2Thorsten Wagener3Department of Civil Engineering, University of Bristol, Bristol, BS8 1TR, UK; Corresponding author.Department of Civil Engineering, University of Bristol, Bristol, BS8 1TR, UK; Department of Computational Hydrosystems, UFZ-Helmholtz Centre for Environmental Research, 04318, Leipzig, GermanyDepartment of Civil Engineering, University of Bristol, Bristol, BS8 1TR, UKDepartment of Civil Engineering, University of Bristol, Bristol, BS8 1TR, UK; Cabot Institute, University of Bristol, Bristol, BS8 1UJ, UKGlobal Sensitivity Analysis (GSA) is a set of statistical techniques to investigate the effects of the uncertainty in the input factors of a mathematical model on the model’s outputs. The value of GSA for the construction, evaluation, and improvement of earth system models is reviewed in a companion paper by Wagener and Pianosi (2019). The present paper focuses on the implementation of GSA and provides a set of workflow scripts to assess the critical choices that GSA users need to make before and while executing GSA. The workflows proposed here can be adopted by GSA users and easily adjusted to a range of GSA methods. We demonstrate how to interpret the outcomes resulting from these different choices and how to revise the choices to improve GSA quality, using a simple rainfall-runoff model as an example. We implement the workflows in the SAFE toolbox, a widely used open source software for GSA available in MATLAB and R. • The workflows aim to contribute to the dissemination of good practice in GSA applications. • The workflows are well-documented and reusable, as a way to ensure robust and reproducible computational science. Method name: Global Sensitivity Analysis, Keywords: Earth system modelling, Sensitivity analysis, Input variability, Reproducibility, Uncertainty analysis, Output metric, Sample size, Simulation performance, Screening, Input interactionshttp://www.sciencedirect.com/science/article/pii/S2215016119302572 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Valentina Noacco Fanny Sarrazin Francesca Pianosi Thorsten Wagener |
spellingShingle |
Valentina Noacco Fanny Sarrazin Francesca Pianosi Thorsten Wagener Matlab/R workflows to assess critical choices in Global Sensitivity Analysis using the SAFE toolbox MethodsX |
author_facet |
Valentina Noacco Fanny Sarrazin Francesca Pianosi Thorsten Wagener |
author_sort |
Valentina Noacco |
title |
Matlab/R workflows to assess critical choices in Global Sensitivity Analysis using the SAFE toolbox |
title_short |
Matlab/R workflows to assess critical choices in Global Sensitivity Analysis using the SAFE toolbox |
title_full |
Matlab/R workflows to assess critical choices in Global Sensitivity Analysis using the SAFE toolbox |
title_fullStr |
Matlab/R workflows to assess critical choices in Global Sensitivity Analysis using the SAFE toolbox |
title_full_unstemmed |
Matlab/R workflows to assess critical choices in Global Sensitivity Analysis using the SAFE toolbox |
title_sort |
matlab/r workflows to assess critical choices in global sensitivity analysis using the safe toolbox |
publisher |
Elsevier |
series |
MethodsX |
issn |
2215-0161 |
publishDate |
2019-01-01 |
description |
Global Sensitivity Analysis (GSA) is a set of statistical techniques to investigate the effects of the uncertainty in the input factors of a mathematical model on the model’s outputs. The value of GSA for the construction, evaluation, and improvement of earth system models is reviewed in a companion paper by Wagener and Pianosi (2019). The present paper focuses on the implementation of GSA and provides a set of workflow scripts to assess the critical choices that GSA users need to make before and while executing GSA. The workflows proposed here can be adopted by GSA users and easily adjusted to a range of GSA methods. We demonstrate how to interpret the outcomes resulting from these different choices and how to revise the choices to improve GSA quality, using a simple rainfall-runoff model as an example. We implement the workflows in the SAFE toolbox, a widely used open source software for GSA available in MATLAB and R. • The workflows aim to contribute to the dissemination of good practice in GSA applications. • The workflows are well-documented and reusable, as a way to ensure robust and reproducible computational science. Method name: Global Sensitivity Analysis, Keywords: Earth system modelling, Sensitivity analysis, Input variability, Reproducibility, Uncertainty analysis, Output metric, Sample size, Simulation performance, Screening, Input interactions |
url |
http://www.sciencedirect.com/science/article/pii/S2215016119302572 |
work_keys_str_mv |
AT valentinanoacco matlabrworkflowstoassesscriticalchoicesinglobalsensitivityanalysisusingthesafetoolbox AT fannysarrazin matlabrworkflowstoassesscriticalchoicesinglobalsensitivityanalysisusingthesafetoolbox AT francescapianosi matlabrworkflowstoassesscriticalchoicesinglobalsensitivityanalysisusingthesafetoolbox AT thorstenwagener matlabrworkflowstoassesscriticalchoicesinglobalsensitivityanalysisusingthesafetoolbox |
_version_ |
1725153550997127168 |