Short-Term Effect of the Addition of Rice Husk Gasification Slag on the Movement and Transformation of Phosphorus in Different Soil Types

Rice husk gasification slag (RS) is a type of biochar that is one of the main by-products generated from the production of biomass power with rice husk as the feed. This study aimed to explore the short-term effect of the application of RS on the movement and transformation of fertilizer P in two di...

Full description

Bibliographic Details
Main Authors: Yuchao Bai, Jing Zhu, Baoyuan Deng, Haili Shi, Zongkang Wang, Dongfang Han, Jixian Duan, Dehan Wang
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/12/6/2458
Description
Summary:Rice husk gasification slag (RS) is a type of biochar that is one of the main by-products generated from the production of biomass power with rice husk as the feed. This study aimed to explore the short-term effect of the application of RS on the movement and transformation of fertilizer P in two different soil types through an incubation experiment. The results showed that the RS addition had a significant influence on the diffusive movement of P in soil microsites close to fertilizer placements both in latosolic red soil and fluvo-aquic soil. After 50 d of incubation, most of the WE-P (water-extractable P), AE-P (acid-extractable P), and Olsen-P (available P) were concentrated within 0−5 mm from the fertilization site. WE-P, Olsen-P, and the movement amount of the P in the 0−5 mm soil section were significantly increased at all levels of the RS application in the fertilizer P both in the two soil types. The application of the RS reduced the sorption and precipitation of the fertilizer P in the soil and improved the efficiency of the fertilizer P. The findings presented in this study may be used as references in developing RS applications that reduce losses of fertilizer P and reduce environmental risks.
ISSN:2071-1050