Asymptotic behaviors of jellyfish model with stage structure

In this paper, a stage-structured jellyfish model with two time delays is formulated and analyzed, the first delay represents the time from the asexually reproduced young polyp to the mature polyp and the second denotes the time from the developed polyp to ephyra (incipient medusa). Global dynamics...

Full description

Bibliographic Details
Main Authors: Zin Thu Win, Boping Tian, Shengqiang Liu
Format: Article
Language:English
Published: AIMS Press 2021-04-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:http://www.aimspress.com/article/doi/10.3934/mbe.2021128?viewType=HTML
id doaj-94a8b76b588e4fbb977ae4494c0d25c5
record_format Article
spelling doaj-94a8b76b588e4fbb977ae4494c0d25c52021-04-21T01:43:24ZengAIMS PressMathematical Biosciences and Engineering1551-00182021-04-011832508252610.3934/mbe.2021128Asymptotic behaviors of jellyfish model with stage structureZin Thu Win0Boping Tian1Shengqiang Liu21. School of Mathematics, Harbin Institute of Technology, Harbin 150001, China1. School of Mathematics, Harbin Institute of Technology, Harbin 150001, China2. School of Mathematical Sciences, Tiangong University, Tianjin 300387, ChinaIn this paper, a stage-structured jellyfish model with two time delays is formulated and analyzed, the first delay represents the time from the asexually reproduced young polyp to the mature polyp and the second denotes the time from the developed polyp to ephyra (incipient medusa). Global dynamics of the model are obtained via monotone dynamical theory: the jellyfish populations go extinct and the trivial equilibrium is globally asymptotically stable if the survival rate of polyp during cloning and the survival rate of the incipient medusa during strobilation are less than their death rates. And if the survival rate of polyp during cloning and the survival rate of the incipient medusa during strobilation are larger than their death rates, a unique positive equilibrium is globally asymptotically stable. Moreover, it is proved that the only stage of polyps will continue without growing into medusa and the boundary equilibrium is globally asymptotically stable if the survival rate of polyp is larger than its death rate during cloning and if there is no survival of the incipient medusa. Numerical simulations are performed to verify our analytical results and to explore the dynamics with/without delays.http://www.aimspress.com/article/doi/10.3934/mbe.2021128?viewType=HTMLjellyfishpolyp-medusadelayglobal dynamicsstage structure
collection DOAJ
language English
format Article
sources DOAJ
author Zin Thu Win
Boping Tian
Shengqiang Liu
spellingShingle Zin Thu Win
Boping Tian
Shengqiang Liu
Asymptotic behaviors of jellyfish model with stage structure
Mathematical Biosciences and Engineering
jellyfish
polyp-medusa
delay
global dynamics
stage structure
author_facet Zin Thu Win
Boping Tian
Shengqiang Liu
author_sort Zin Thu Win
title Asymptotic behaviors of jellyfish model with stage structure
title_short Asymptotic behaviors of jellyfish model with stage structure
title_full Asymptotic behaviors of jellyfish model with stage structure
title_fullStr Asymptotic behaviors of jellyfish model with stage structure
title_full_unstemmed Asymptotic behaviors of jellyfish model with stage structure
title_sort asymptotic behaviors of jellyfish model with stage structure
publisher AIMS Press
series Mathematical Biosciences and Engineering
issn 1551-0018
publishDate 2021-04-01
description In this paper, a stage-structured jellyfish model with two time delays is formulated and analyzed, the first delay represents the time from the asexually reproduced young polyp to the mature polyp and the second denotes the time from the developed polyp to ephyra (incipient medusa). Global dynamics of the model are obtained via monotone dynamical theory: the jellyfish populations go extinct and the trivial equilibrium is globally asymptotically stable if the survival rate of polyp during cloning and the survival rate of the incipient medusa during strobilation are less than their death rates. And if the survival rate of polyp during cloning and the survival rate of the incipient medusa during strobilation are larger than their death rates, a unique positive equilibrium is globally asymptotically stable. Moreover, it is proved that the only stage of polyps will continue without growing into medusa and the boundary equilibrium is globally asymptotically stable if the survival rate of polyp is larger than its death rate during cloning and if there is no survival of the incipient medusa. Numerical simulations are performed to verify our analytical results and to explore the dynamics with/without delays.
topic jellyfish
polyp-medusa
delay
global dynamics
stage structure
url http://www.aimspress.com/article/doi/10.3934/mbe.2021128?viewType=HTML
work_keys_str_mv AT zinthuwin asymptoticbehaviorsofjellyfishmodelwithstagestructure
AT bopingtian asymptoticbehaviorsofjellyfishmodelwithstagestructure
AT shengqiangliu asymptoticbehaviorsofjellyfishmodelwithstagestructure
_version_ 1721517054789419008