On dynamic programming on the values in the semigroup

For not considered previously discrete optimal control problem with target function values in a linearly ordered Abelian semigroup given characterization of the solvability and on its basis the algorithm seeks optimal process with the help of delivering Bellman values elements of limiting sets. We m...

Full description

Bibliographic Details
Main Author: Valeriy G. Ovchinnikov
Format: Article
Language:English
Published: Samara State Technical University 2016-03-01
Series:Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki
Subjects:
Online Access:http://mi.mathnet.ru/eng/vsgtu1473
id doaj-947f280cc4be4d4eac560b427a330464
record_format Article
spelling doaj-947f280cc4be4d4eac560b427a3304642020-11-24T21:11:10ZengSamara State Technical UniversityVestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki1991-86152310-70812016-03-0120115816610.14498/vsgtu1473On dynamic programming on the values in the semigroupValeriy G. Ovchinnikov0Samara State Technical University, Samara, 443100, Russian FederationFor not considered previously discrete optimal control problem with target function values in a linearly ordered Abelian semigroup given characterization of the solvability and on its basis the algorithm seeks optimal process with the help of delivering Bellman values elements of limiting sets. We mark the modifications to this algorithm, when 1) P is nonempty subset of numbers with the natural ordering and the operation producing the maximum of two numbers; 2) P is set of nonnegative numbers with the natural ordering and the addition (or multiplication); 3) P is lexicographical product of m (not less than two) linearly ordered Abelian semigroups; 4) P is lexicographic product of m (not less than two) sets of real numbers with the natural ordering and the addition, and this algorithm gets m-optimal process easier than the previous author's algorithm. http://mi.mathnet.ru/eng/vsgtu1473 linearly ordered Abelian semigroupdiscrete optimal controloptimal processdelivering Bellman values elements of limiting setsdynamic programminglexicographical productsalgorithms
collection DOAJ
language English
format Article
sources DOAJ
author Valeriy G. Ovchinnikov
spellingShingle Valeriy G. Ovchinnikov
On dynamic programming on the values in the semigroup
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki
linearly ordered Abelian semigroup
discrete optimal control
optimal process
delivering Bellman values elements of limiting sets
dynamic programming
lexicographical products
algorithms
author_facet Valeriy G. Ovchinnikov
author_sort Valeriy G. Ovchinnikov
title On dynamic programming on the values in the semigroup
title_short On dynamic programming on the values in the semigroup
title_full On dynamic programming on the values in the semigroup
title_fullStr On dynamic programming on the values in the semigroup
title_full_unstemmed On dynamic programming on the values in the semigroup
title_sort on dynamic programming on the values in the semigroup
publisher Samara State Technical University
series Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki
issn 1991-8615
2310-7081
publishDate 2016-03-01
description For not considered previously discrete optimal control problem with target function values in a linearly ordered Abelian semigroup given characterization of the solvability and on its basis the algorithm seeks optimal process with the help of delivering Bellman values elements of limiting sets. We mark the modifications to this algorithm, when 1) P is nonempty subset of numbers with the natural ordering and the operation producing the maximum of two numbers; 2) P is set of nonnegative numbers with the natural ordering and the addition (or multiplication); 3) P is lexicographical product of m (not less than two) linearly ordered Abelian semigroups; 4) P is lexicographic product of m (not less than two) sets of real numbers with the natural ordering and the addition, and this algorithm gets m-optimal process easier than the previous author's algorithm.
topic linearly ordered Abelian semigroup
discrete optimal control
optimal process
delivering Bellman values elements of limiting sets
dynamic programming
lexicographical products
algorithms
url http://mi.mathnet.ru/eng/vsgtu1473
work_keys_str_mv AT valeriygovchinnikov ondynamicprogrammingonthevaluesinthesemigroup
_version_ 1716754292635860992