Micro-structured tungsten, a high heat flux pulse proof material

Micro structured tungsten is a new approach to address one of the main issues of tungsten as high heat flux (HHF) plasma facing material (PFM), which is its brittleness and its propensity to crack formation under pulsed, ELM like, heat loads (Loewenhoff et al., 2015; Wirtzet al., 2015 [2,3]). With p...

Full description

Bibliographic Details
Main Authors: A. Terra, G. Sergienko, A. Kreter, Y. Martynova, M. Rasiński, M. Wirtz, Th. Loewenhoff, G. Pintsuk, D. Dorow-Gerspach, Y. Mao, D. Schwalenberg, L. Raumann, J.W. Coenen, S. Brezinsek, B. Unterberg, Ch. Linsmeier
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:Nuclear Materials and Energy
Subjects:
PFC
PFM
Online Access:http://www.sciencedirect.com/science/article/pii/S235217912030065X
id doaj-947337006e04418abde702d9b9a41fef
record_format Article
spelling doaj-947337006e04418abde702d9b9a41fef2020-12-19T05:07:42ZengElsevierNuclear Materials and Energy2352-17912020-12-0125100789Micro-structured tungsten, a high heat flux pulse proof materialA. Terra0G. Sergienko1A. Kreter2Y. Martynova3M. Rasiński4M. Wirtz5Th. Loewenhoff6G. Pintsuk7D. Dorow-Gerspach8Y. Mao9D. Schwalenberg10L. Raumann11J.W. Coenen12S. Brezinsek13B. Unterberg14Ch. Linsmeier15Corresponding author.; Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich, GermanyMicro structured tungsten is a new approach to address one of the main issues of tungsten as high heat flux (HHF) plasma facing material (PFM), which is its brittleness and its propensity to crack formation under pulsed, ELM like, heat loads (Loewenhoff et al., 2015; Wirtzet al., 2015 [2,3]). With power densities between 100 MW/m2 and 1 GW/m2, progressive thermal fatigue induced damages like roughening, subsequent cracking and even melting will occur in dependence on the pulse number and PFM base temperature. This represents a serious issue for the usage of tungsten as HHF-PFM. In future tokamaks, such as ITER, about 108 ELMs are expected to occur during the operational lifetime.Several approaches have been tried to overcome this brittleness issue, e.g. alloying tungsten with others elements (Linsmeier et al., 2017 [4]) or introducing pseudo-ductility due to the additions of fibres thus creating composites (Reiser et al., 2017 [5]). Micro-structured tungsten showed a significant improvement in comparison with any of these approaches with respect to the damage expected by ELMs. This investigation on both bulk reference and micro-structured tungsten was performed in the PSI-2 facility (Kreter et al., 2015 [8]). A sequential load was applied combining steady state deuterium plasma (5.1 × 1025 D + m−2, 51 eV, 240 °C, 150 min) loading with laser pulses (up to 105 pulses of 0.5 GW/m2, 3.6 mm spot diameter, 20 J, 1 ms pulse duration, up to 25 Hz pulse frequency). In contrast to reference bulk tungsten, none of the applied loading conditions caused any evident damage on the micro-structured tungsten. The maximum surface temperature within the loaded area measured with a fast pyrometer was increased by about 800 °C at the end of the laser exposure for the reference sample. This is related to the emissivity changes and local temperature increase caused by surface degradation. Meanwhile, the micro-structured sample did not show any change of its temperature response from the 10th to the 100 000th pulse.http://www.sciencedirect.com/science/article/pii/S235217912030065XMicro-structured tungstenPFCPFMHigh heat loadThermal cyclingRetention
collection DOAJ
language English
format Article
sources DOAJ
author A. Terra
G. Sergienko
A. Kreter
Y. Martynova
M. Rasiński
M. Wirtz
Th. Loewenhoff
G. Pintsuk
D. Dorow-Gerspach
Y. Mao
D. Schwalenberg
L. Raumann
J.W. Coenen
S. Brezinsek
B. Unterberg
Ch. Linsmeier
spellingShingle A. Terra
G. Sergienko
A. Kreter
Y. Martynova
M. Rasiński
M. Wirtz
Th. Loewenhoff
G. Pintsuk
D. Dorow-Gerspach
Y. Mao
D. Schwalenberg
L. Raumann
J.W. Coenen
S. Brezinsek
B. Unterberg
Ch. Linsmeier
Micro-structured tungsten, a high heat flux pulse proof material
Nuclear Materials and Energy
Micro-structured tungsten
PFC
PFM
High heat load
Thermal cycling
Retention
author_facet A. Terra
G. Sergienko
A. Kreter
Y. Martynova
M. Rasiński
M. Wirtz
Th. Loewenhoff
G. Pintsuk
D. Dorow-Gerspach
Y. Mao
D. Schwalenberg
L. Raumann
J.W. Coenen
S. Brezinsek
B. Unterberg
Ch. Linsmeier
author_sort A. Terra
title Micro-structured tungsten, a high heat flux pulse proof material
title_short Micro-structured tungsten, a high heat flux pulse proof material
title_full Micro-structured tungsten, a high heat flux pulse proof material
title_fullStr Micro-structured tungsten, a high heat flux pulse proof material
title_full_unstemmed Micro-structured tungsten, a high heat flux pulse proof material
title_sort micro-structured tungsten, a high heat flux pulse proof material
publisher Elsevier
series Nuclear Materials and Energy
issn 2352-1791
publishDate 2020-12-01
description Micro structured tungsten is a new approach to address one of the main issues of tungsten as high heat flux (HHF) plasma facing material (PFM), which is its brittleness and its propensity to crack formation under pulsed, ELM like, heat loads (Loewenhoff et al., 2015; Wirtzet al., 2015 [2,3]). With power densities between 100 MW/m2 and 1 GW/m2, progressive thermal fatigue induced damages like roughening, subsequent cracking and even melting will occur in dependence on the pulse number and PFM base temperature. This represents a serious issue for the usage of tungsten as HHF-PFM. In future tokamaks, such as ITER, about 108 ELMs are expected to occur during the operational lifetime.Several approaches have been tried to overcome this brittleness issue, e.g. alloying tungsten with others elements (Linsmeier et al., 2017 [4]) or introducing pseudo-ductility due to the additions of fibres thus creating composites (Reiser et al., 2017 [5]). Micro-structured tungsten showed a significant improvement in comparison with any of these approaches with respect to the damage expected by ELMs. This investigation on both bulk reference and micro-structured tungsten was performed in the PSI-2 facility (Kreter et al., 2015 [8]). A sequential load was applied combining steady state deuterium plasma (5.1 × 1025 D + m−2, 51 eV, 240 °C, 150 min) loading with laser pulses (up to 105 pulses of 0.5 GW/m2, 3.6 mm spot diameter, 20 J, 1 ms pulse duration, up to 25 Hz pulse frequency). In contrast to reference bulk tungsten, none of the applied loading conditions caused any evident damage on the micro-structured tungsten. The maximum surface temperature within the loaded area measured with a fast pyrometer was increased by about 800 °C at the end of the laser exposure for the reference sample. This is related to the emissivity changes and local temperature increase caused by surface degradation. Meanwhile, the micro-structured sample did not show any change of its temperature response from the 10th to the 100 000th pulse.
topic Micro-structured tungsten
PFC
PFM
High heat load
Thermal cycling
Retention
url http://www.sciencedirect.com/science/article/pii/S235217912030065X
work_keys_str_mv AT aterra microstructuredtungstenahighheatfluxpulseproofmaterial
AT gsergienko microstructuredtungstenahighheatfluxpulseproofmaterial
AT akreter microstructuredtungstenahighheatfluxpulseproofmaterial
AT ymartynova microstructuredtungstenahighheatfluxpulseproofmaterial
AT mrasinski microstructuredtungstenahighheatfluxpulseproofmaterial
AT mwirtz microstructuredtungstenahighheatfluxpulseproofmaterial
AT thloewenhoff microstructuredtungstenahighheatfluxpulseproofmaterial
AT gpintsuk microstructuredtungstenahighheatfluxpulseproofmaterial
AT ddorowgerspach microstructuredtungstenahighheatfluxpulseproofmaterial
AT ymao microstructuredtungstenahighheatfluxpulseproofmaterial
AT dschwalenberg microstructuredtungstenahighheatfluxpulseproofmaterial
AT lraumann microstructuredtungstenahighheatfluxpulseproofmaterial
AT jwcoenen microstructuredtungstenahighheatfluxpulseproofmaterial
AT sbrezinsek microstructuredtungstenahighheatfluxpulseproofmaterial
AT bunterberg microstructuredtungstenahighheatfluxpulseproofmaterial
AT chlinsmeier microstructuredtungstenahighheatfluxpulseproofmaterial
_version_ 1724377782885023744