Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density

We consider the long-time behavior of a nonlinear PDE with a memory term which can be recast in the abstract form

Bibliographic Details
Main Authors: Cavalcanti Marcelo M., Domingos Cavalcanti Valéria N., Lasiecka Irena, Webler Claudete M.
Format: Article
Language:English
Published: De Gruyter 2017-05-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2016-0027
id doaj-945be3300f954a61a9fd1c746f368342
record_format Article
spelling doaj-945be3300f954a61a9fd1c746f3683422021-09-06T19:39:54ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2017-05-016212114510.1515/anona-2016-0027Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable densityCavalcanti Marcelo M.0Domingos Cavalcanti Valéria N.1Lasiecka Irena2Webler Claudete M.3Department of Mathematics, State University of Maringá, Maringá - PR, 87020-900, BrazilDepartment of Mathematics, State University of Maringá, Maringá - PR, 87020-900, BrazilDepartment of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA; and IBS, Polish Academy of Sciences, Warsaw, PolandDepartment of Mathematics, State University of Maringá, Maringá - PR, 87020-900, BrazilWe consider the long-time behavior of a nonlinear PDE with a memory term which can be recast in the abstract formhttps://doi.org/10.1515/anona-2016-0027longitudinal wave motionthin rodsviscoelastic dampingintrinsic decay rates35l05 34dxx 35a27
collection DOAJ
language English
format Article
sources DOAJ
author Cavalcanti Marcelo M.
Domingos Cavalcanti Valéria N.
Lasiecka Irena
Webler Claudete M.
spellingShingle Cavalcanti Marcelo M.
Domingos Cavalcanti Valéria N.
Lasiecka Irena
Webler Claudete M.
Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density
Advances in Nonlinear Analysis
longitudinal wave motion
thin rods
viscoelastic damping
intrinsic decay rates
35l05
34dxx
35a27
author_facet Cavalcanti Marcelo M.
Domingos Cavalcanti Valéria N.
Lasiecka Irena
Webler Claudete M.
author_sort Cavalcanti Marcelo M.
title Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density
title_short Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density
title_full Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density
title_fullStr Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density
title_full_unstemmed Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density
title_sort intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density
publisher De Gruyter
series Advances in Nonlinear Analysis
issn 2191-9496
2191-950X
publishDate 2017-05-01
description We consider the long-time behavior of a nonlinear PDE with a memory term which can be recast in the abstract form
topic longitudinal wave motion
thin rods
viscoelastic damping
intrinsic decay rates
35l05
34dxx
35a27
url https://doi.org/10.1515/anona-2016-0027
work_keys_str_mv AT cavalcantimarcelom intrinsicdecayratesfortheenergyofanonlinearviscoelasticequationmodelingthevibrationsofthinrodswithvariabledensity
AT domingoscavalcantivalerian intrinsicdecayratesfortheenergyofanonlinearviscoelasticequationmodelingthevibrationsofthinrodswithvariabledensity
AT lasieckairena intrinsicdecayratesfortheenergyofanonlinearviscoelasticequationmodelingthevibrationsofthinrodswithvariabledensity
AT weblerclaudetem intrinsicdecayratesfortheenergyofanonlinearviscoelasticequationmodelingthevibrationsofthinrodswithvariabledensity
_version_ 1717769806625636352